Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
侧向受荷桩周土体内部位移场的模型试验研究
袁炳祥, 吴跃东, 陈锐, 冯仲文, 汪亦显
1. 广东工业大学 土木与交通工程学院,广东 广州 510006
2. 哈尔滨工业大学 深圳研究生院,广东 深圳 518055
3. 河海大学 土木与交通学院,江苏 南京210098
4. 合肥工业大学 土木与水利工程学院,安徽 合肥230009
Model tests on displacement field of internal soil induced by laterally loading pile
YUAN Bing xiang , WU Yue dong, CHEN Rui, FENG Zhong wen, WANG Yi xian
1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
2. Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China;
3. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;
4. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
 全文: PDF(2260 KB)   HTML
摘要:

针对常规室内模型试验仅限于土体表面位移量测的缺点,利用玻璃砂、正十二烷和白矿油混合液合成人工透明土,设计侧向受荷桩周土体位移测量试验系统,研究桩周土内部的体移变化规律.该系统主要包括激光器、数码相机、水平加载装置、应变采集装置和计算机等.激光穿过透明土,形成目标观测切面,数码相机捕捉激光和颗粒相互作用产生的散斑图像并存储与计算机中.在试验过程中,土体位移图片通过PIVview2C软件进行分析,可以获得土体内部的位移场.从不同深度来测量土体内部变形,可以更直观地观测到侧向受荷桩周土体的位移发展变化规律.试验结果表明,侧向受荷桩土体内部位移主要集中在桩前接近土表面的浅层土体,桩前土内部体在水平面内呈纺锤体状,土体深度从2.4D(D为桩直径)增加为3.8D时,桩前土体影响范围从7.5D减小为6D,土体最大位移减小了约25%.

Abstract:

The internal soil deformation induced by a laterally loaded pile was analyzed using the transparent soil. The transparent soil was made of baked quartz and a pore fluid with a matching refractive index. An optical set-up consisted of two lasers, two digital cameras, a lateral load system, a model pile, a strain gauge testing instruments and a computer. A distinctive speckle pattern was generated by the interaction of the laser in transparent soil. Camera 1 was above the model box with its optical axis perpendicular to the ground surface set and Camera 2 was set in front of the model box with its optical axis perpendicular to the vertical profile. Two cameras were used to continuously capture a series of pictures of the transparent soil model induced by a laterally loaded pile. A set of laser speckle images obtained before and after the tests were used to calculate the relative displacement field. Two laser devices were used to illuminate different targeted sections close to the pile. Results illustrated that the soil displacements occurred near the ground surface in front of the pile. The influence zone in front of the pile decreased from 7.5 times pile diameter (D) to 6D and the maximum displacement decreased about 25% when the soil depth increased from 2.4D to 3.8D.

出版日期: 2016-10-28
:  TU 473  
基金资助:

国家自然科学基金资助项目(51308164,51304057);中国博士后科学基金资助项目(2014T70349,2013M530157);广东省自然科学基金资助项目(2016A030310345).

通讯作者: 陈锐,男,副教授. ORCID:0000-0002-8280-9414.     E-mail: chenrui1005@hotmail.com
作者简介: 袁炳祥(1983—),男,副教授,从事侧向受荷桩、PIV技术和透明土研究. ORCID:0000-0001-5650-2374. E-mail:bingxiangyuan@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

袁炳祥, 吴跃东, 陈锐, 冯仲文, 汪亦显. 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.10.026.

YUAN Bing xiang,WU Yue dong, CHEN Rui, FENG Zhong wen, WANG Yi xian. Model tests on displacement field of internal soil induced by laterally loading pile. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.10.026.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.10.026        http://www.zjujournals.com/eng/CN/Y2016/V50/I10/2031

[1] 张磊,龚晓南,俞建霖.水平荷载单桩计算的非线性地基反力法研究[J].岩土工程学报,2011, 33(2): 309-314.
ZHANG Lei, GONG Xiaonan, YU Jianlin. Solutions for laterally loaded single pile by nonlinear subgradereaction method [J]. Chinese Journal of GeotechnicalEngineering, 2011, 33(2): 309-314.
[2] 许少辉,张旭群,袁炳祥.深厚软土地区CM复合地基相互作用特性研究[J].施工技术,2016,45(13): 67-71.
XU Shaohui, ZHANG Xuqun, YUAN Bingxiang. Action characteristic of CM composite foundation in deep soft soil area [J]. Construction Technology, 2016, 45(13): 67-71.
[3] YANG Z X, JARDINE R J, ZHU B T, et al. Sand grain crushing and interface shearing during displacement pile installation in sand [J]. Géotechnique, 2010, 60(6): 469-482.
[4] CAI Y Q, DING G Y, XU C J, et al. Vertical amplitude reduction of Rayleigh waves by a row of piles in a poroelastic halfspace [J]. International Journal forNumerical and Analytical Methods in Geomechanic, 2009, 33(16): 1799-1821.
[5] POULOS H G. Behavior of laterally loaded piles: Isingle piles [J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(5): 711-731.
[6] REESE L C, COX W R, KOOP F D. Analysis of laterally loaded piles in sand [C]∥Proceedings of 6th Annual Offshore Technology Conference. Houston: [s.n.],1974: 473-483.
[7] ZHANG Hanqing, LI Shucai, LIANG Fayun, et al. Simplified method for settlement prediction of single pile and pile group using a hyperbolic model \[J\]. International Journal of Civil Engineering, 2014, 12(2):179-192.
[8] HONG Y, SOOMRO M A, NG C W W, et al. Tunnelling under pile groups and rafts: numerical parametric study on tension effects [J]. Computers and Geotechnics, 2015, 68(1): 54-65.
[9] WHITE D J, TAKE W A, BOLTON M D. Soildeformation measurement using particle image velocimetry (PIV) and photogrammetry [J]. Geotechnique, 2003, 53(7): 619-631.
[10] YUAN B X, CHEN R, LI J H, et al. A hydraulic gradient similitude testing system for studying the responses of a laterally loaded pile and soil deformation [J]. Environmental Earth Sciences, 2016, 75(97): 17.
[11] LIU J Y, YUAN B X, MAI V T, et al. Optical measurement of sand deformation around a laterally loaded pile [J]. Journal of Testing and Evaluation, 2011,39(5): 754-759.
[12] YUAN B X, LIU J Y, CHEN W W, et al. Development of a robust stereoPIV system for 3D soildeformation measurement [J]. Journal of Testing and Evaluation, 2012, 40(2): 256-264.
[13] YUAN B X, CHEN R, TENG J, et al. Investigation on 3D ground deformation and response of active and passive piles in loose sand [J]. Environmental Earth Sciences, 2015, 73(11): 7641-7649.
[14] PHAM K D, OTANI J, WATANABE Y, et al.Application of XRay CT on boundary value problems in geotechnical engineering: research on ground failure due to lateral pile loadings [C]∥Geotechnical Engineering in the Information Technology Age. Atlanta:  ASCE, 2006.
[15] 隋旺华,高岳,刘金元.透明土实验技术现状与展望[J].煤炭学报,2011,36(4): 577-582.
SUI Wanghua, GAO Yue, LIU Jinyuan. Status and prospect of transparent soil experimental technique [J]. Journal of China Coal Society, 2011, 36(4): 577-582.
[16]  SUI Wanghua, QU Hao, GAO Yue. Modeling of grout propagation in transparent replica of rock fractures [J]. Geotechnical Testing Journal, 2015,38(5): 765-773.
[17] ISKANDER M G, LIU J Y, SADEK S. Transparent amorphous silica to model clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(3): 262-273.
[18] LIU J Y, ISKANDER M G. Modeling capacity of transparent soil [J]. Canadian Geotechnical Journal, 2010, 47(4): 451-460.
[19] ISKANDER M G, LIU J Y, SADEK S. Optical measurement of deformation using transparent silica gel to model sand [J]. International Journal of Physical Modelling In Geotechnics, 2002, 2(4): 13-26.
[20] ISKANDER M G, LIU J Y. Spatial deformation measurement using transparent soil [J]. Geotechnical Testing Journal, 2010, 33(4): 18.
[21] CAO Z H, LIU H L, KONG G Q, et al. Physical modelling of pipe piles under oblique pullout loadsusing transparent soil and particle image velocimetry [J]. Journal of Central South University, 2015,22(11): 4329-4336.
[22] 王成,邓安福,李晓红.水平荷载短桩桩土共同作用全过程分析[J].岩土力学,2004, 25(2): 296-300.
WANG Cheng, DENG Anfu, LI Xiaohong. Complete process analysis of pilesoil interaction for laterally loaded short pile [J]. Rock and Soil Mechanics, 2004, 25(2): 296-300.
[23] 周健,张刚,曾庆有.主动侧向受荷桩模型试验与颗粒流数值模拟研究[J].岩土工程学报,2007, 29(5):650-656.
ZHOU Jian, ZHANG Gang, ZENG Qingyou. Model tests and PFC2D numerical analysis of active laterally loaded piles [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 650-656.
[24] YUAN B X, CHEN W W, JIANG T, et al. Stereo particle image velocimetry measurement of 3D soildeformation around laterally loaded pile in sand [J]. Journal of Central South University, 2013, 20(3):791-798.
[25] YUAN B X, CHEN R, TENG J, et al. Effect of passive pile on 3D ground deformation and on active pile response [J]. The Scientific World Journal, 2014, Article ID 904186: 16.

[1] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[2] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[3] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[4] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[5] 邱子义,韩同春,豆红强,李智宁. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016, 50(3): 551-558.
[6] 庾焱秋,王奎华,吕述晖,徐礼阁. 传感器黏结剂对低应变测试曲线的影响[J]. 浙江大学学报(工学版), 2015, 49(9): 1725-1730.
[7] 苟尧泊,俞峰,夏唐代. 增层开挖引起既有预制桩残余应力释放分析[J]. 浙江大学学报(工学版), 2015, 49(5): 969-974.
[8] 刘念武, 龚晓南, 俞峰. 大直径钻孔灌注桩的竖向承载性能[J]. 浙江大学学报(工学版), 2015, 49(4): 763-768.
[9] 王奎华,李振亚,吕述晖,张鹏,庾焱秋. 静钻根植竹节桩纵向振动特性及应用研究[J]. 浙江大学学报(工学版), 2015, 49(3): 522-530.
[10] 龙凡, 王立忠, 李凯, 李玲玲. 舟山黏土和温州黏土灵敏度差别成因[J]. 浙江大学学报(工学版), 2015, 49(2): 218-224.
[11] 王奎华,陈鑫,吕述晖,吴文兵,李振亚. 自由振动时带承台单桩的纵向动力特性[J]. 浙江大学学报(工学版), 2014, 48(9): 1595-1602.
[12] 刘念武,龚晓南,楼春晖. 软土地区基坑开挖对周边设施的变形特性影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1141-1147.
[13] 伍程杰, 龚晓南, 俞峰, 楼春晖, 刘念武. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报(工学版), 2014, 48(4): 671-678.
[14] 胡安峰, 张光建, 贾玉帅, 张晓冬. 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. J4, 2014, 48(4): 721-726.
[15] 王忠瑾,谢新宇,方鹏飞,李金柱,金伟良. 刚性长短组合桩的非线性沉降计算分析[J]. J4, 2014, 48(3): 463-470.