Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
臭氧多脱过程中残留臭氧的分解试验研究
林法伟, 朱燕群, 徐超群, 马 强, 王智化, 周俊虎, 岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Experimental study on residual ozone decomposition in process of multi-pollutants removal by ozone
LIN Fa-wei, ZHU Yan-qun, XU Chao-qun, MA Qiang, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(670 KB)   HTML
摘要:

为了实现臭氧氧化多种污染物协同脱除反应后残留臭氧的近零排放,通过实验室模拟某300 MW锅炉烟气臭氧多脱条件,开展残余臭氧的分解试验研究。研究不同水浴温度、喷淋温度、添加剂种类、添加剂浓度等关键参数对脱硫塔及烟囱尾部烟道中残余臭氧分解特性的影响. 试验结果表明,水浴温度和喷淋温度越高,残余臭氧的分解效果越好;喷淋液中加入还原性物质对残余臭氧的分解有很明显的促进作用;添加剂浓度在一定程度上影响残余臭氧的分解效果. 使用CaSO3+(NH4)2SO4或Na2SO3+NaNO2复合型添加剂最终实现超低残余臭氧排放体积分数为0.03×10-6~0.04×10-6,满足了国家环境空气质量标准0.047×10-6.

Abstract:

The observation of residual ozone decomposition with the purpose of near-zero gas emission was conducted during the process of simultaneous multi-pollutants removal by ozone. A 300 MW boiler flue gas conditions were simulated. The effects of bath temperature, spray temperature, additives species and concentration of additives were attentively employed to conduct the residual ozone decomposition. The increase of bath temperature and spray temperature can improve the residual ozone decomposition. The residual ozone decomposition can be obviously promoted in spray tower when the spray liquid containing reductive substances. Concentration of additive had a positive effect on ozone decomposition. Compound additive (CaSO3+(NH4)2SO4 or Na2SO3+NaNO2) achieved the highest decomposition among them. The ozone emission at the exit was 0.03×10-6~0.04×10-6, which could satisfy the national emission limit of 0.047×10-6.

出版日期: 2015-09-10
:  X 701  
基金资助:

脱硫脱硝技术及其产业化科技创新团队资助项目(2011R50017);国家“973”重点基础研究发展规划资助项目(2012CB214906)

通讯作者: 朱燕群,女,工程师     E-mail: yqzhu@zju.edu.cn
作者简介: 林法伟(1993-),男,博士生,从事臭氧氧化多种污染物协同脱除的研究. E-mail: linfawei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林法伟, 朱燕群, 徐超群, 马 强, 王智化, 周俊虎, 岑可法. 臭氧多脱过程中残留臭氧的分解试验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.07.007.

LIN Fa-wei, ZHU Yan-qun, XU Chao-qun, MA Qiang, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Experimental study on residual ozone decomposition in process of multi-pollutants removal by ozone. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.07.007.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.07.007        http://www.zjujournals.com/eng/CN/Y2015/V49/I7/1249

[1] WANG Zhi-hua, ZHOU Jun-hu, ZHU Yan-qun, et al. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results [J]. Fuel Processing Technology, 2007, 88(8): 817-823.
[2] 张相,朱燕群,王智化,等. 臭氧氧化多种污染物协同脱除及副产物提纯的试验研究[J]. 工程热物理学报, 2012, 33(7): 1259-1262.
ZHANG Xiang, ZHU Yan-qun, WANG Zhi-hua, et al. Experimental research for multi-pollution control by ozone and by-product purification [J].Journal of Engineering Thermophysics, 2012, 33(7): 1259-1262.
[3] SKALSKA K, MILLER J S, WILK M, et al. Nitrogen oxides ozonation as a method for NOx emission abatement [J]. Ozone: Science and Engineering, 2012, 34(4): 252-258.
[4] SKALSKA K, MILLER J S, LEDAKOWICZ S. Kinetics of nitric oxide oxidation [J]. Chemical Papers, 2010, 64(2): 269-272.
[5] MOK Y S, LEE H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption: reduction technique [J]. Fuel Processing Technology, 2006, 87(7): 591-597.
[6] 王智化. 燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D]. 杭州:浙江大学, 2005.
WANG Zhi-hua. Mechanism study on multi-pollution control simultaneously during coal combustion and direct numerical simulation of reaction jets flow [D]. Hangzhou: Zhejiang University, 2005.
[7] STAMATE E, IRIMIEA C, SALEWSKI M. Investigation of NOx reduction by low temperature oxidation using ozone produced by dielectric barrier discharge [J]. Japanese Journal of Applied Physics, 2013, 52(5): 3E-5E.
[8] ZHANG Jia, ZHANG Rui, CHEN Xin, et al. Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption [J]. Industrial and Engineering Chemistry Research, 2014, 53(15): 6450-6456.
[9] DORA J. Parametric studies of the effectiveness of oxidation of NO by ozone [J]. Chemical and Process Engineering, 2009, 30 (4): 621-634.
[10] SKALSKA K, MILLER J S, LEDAKOWICZ S. Intensification of NOx absorption process by means of ozone injection into exhaust gas stream [J]. Chemical Engineering and Processing: Process Intensification, 2012, 61: 69-74.
[11] WANG Zhi-hua, CEN Ke-fa, ZHOU Jun-hu, et al. Simultaneous multi-pollutants removal in flue gas by ozone [M]. Berlin: Springer, 2014.
[12] GB 3095-2012, 环境空气质量标准[S]. 北京: 中国环境科学出版社, 2012.
[13] GB18066-2000, 居住区大气中臭氧卫生标准[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2000.
[14] GB28232-2011, 臭氧发生器安全与卫生标准[S]. 北京: 中华人民共和国卫生部, 2011.
[15] BELTRN F J. Ozone reaction kinetics for water and wastewater systems [M]. [S. l.]:CRC, 2004.
[16] WEISS J. Investigations on the radical HO2 in solution [J]. Transactions of the Faraday Society, 1935, 31(1): 668-681.
[17] STAEHELIN J, HOIGNE J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide [J]. Environmental Science and Technology, 1982, 16(10): 676-681.
[18] STAEHELIN J, HOIGNE J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions [J]. Environmental Science and Technology, 1985, 19(12): 1206-1213.
[19] BUHLER R, STAEHELIN J, HOIGNE J. Ozone decomposition in water studied by pulse radiolysis 1. HO2/O2 and HO3/O3 as intermediates correction [J]. The Journal of Physical Chemistry, 1984, 88(22): 2560-2564.
[20] STAEHELIN J, BHLER R E, HOIGN J. Ozone decomposition in water studied by pulse radiolysis. 2.hydroxyl and hydrogen tetroxide (HO4) as chain intermediates [J]. The Journal of Physical Chemistry, 1984, 88(24): 5999-6004.
[21] TOMIYASU H, FUKUTOMI H, GORDON G. Kinetics and mechanism of ozone decomposition in basic aqueous solution [J]. Inorganic Chemistry, 1985, 24(19): 2962-2966.
[22] 福奇曼E G, 布朗宁R G.. 臭氧消毒(国际臭氧学会第三次国际会议论文集)[M]. 北京: 中国建筑工业出版社,1983.
[23] 李艳菊. 室内臭氧污染变化规律研究[D]. 天津:天津大学, 2005.
LI Yan-ju. Study on the changing laws of indoor ozone contamination [D]. Tianjin: Tianjin University, 2005.
[24] SEASE W S. Ozone mass transfer and contact systems [C]∥Proceedings of the 2nd International Symposium on Ozone Technology. New York: International Ozone Institute, Syracuse, 1976: 114.
[25] 石志平,王文生. 相对湿度变化对臭氧分解速率的影响 [J]. 保鲜与加工, 2004, 4(6): 24-25.
SHI Zhi-ping, WANG Wen-sheng. Effect of different relative humidity on decomposable rate of ozone [J]. Storage and Process, 2004, 4(6): 24-25.

[1] 许希, 徐甸, 严佩, 朱唯卓, 郑成航, 高翔, 骆仲泱, 倪明江, 岑可法. 高温线板式静电除尘器颗粒捕集[J]. 浙江大学学报(工学版), 2017, 51(3): 487-493.
[2] 俞晋频,邱坤赞,宋浩,高翔,周劲松. Cr/TiO2催化剂汞氧化的实验[J]. 浙江大学学报(工学版), 2015, 49(11): 2186-2192.
[3] 万益, 黄薇薇, 郑成航, 高翔, 岑可法. 湿式静电除尘器喷嘴特性[J]. 浙江大学学报(工学版), 2015, 49(2): 336-343.
[4] 王惠挺,丁红蕾,姚国新,张涌新,郑成航,高翔,骆仲泱,岑可法. 添加剂强化钙基湿法烟气脱硫的试验研究[J]. J4, 2014, 48(1): 50-55.
[5] 毛剑宏, 蒋新伟, 钟毅, 宋浩, 吴卫红, 潘淑萍, 高翔, 骆仲泱, 岑可法. 变截面倾斜烟道导流板对AIG入口流场的影响[J]. J4, 2011, 45(8): 1453-1457.
[6] 毛剑宏, 宋浩, 吴卫红, 钟毅, 高翔, 骆仲泱, 岑可法. 电站锅炉SCR脱硝系统导流板的设计与优化[J]. J4, 2011, 45(6): 1124-1129.
[7] 杨建涛, 潘华, 陈杰, 苏清发, 汪大翚, 施耀. 低温等离子体吸附两段式系统降解硫化氢[J]. J4, 2010, 44(12): 2411-2415.