Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
机器人制孔姿态优化与光顺
黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林
浙江大学 机械工程学院,浙江 杭州 310027
Posture optimization and smoothness for robot drilling
HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin
College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
 全文: PDF(2228 KB)   HTML
摘要:
针对机器人在外力作用下由结构变形引起的制孔位置沿工件表面滑移问题,研究应用机器人制孔的自由度冗余特性,通过优化机器人制孔姿态抑制末端位置滑移,提高机器人的定位精度.制孔程序中首末加工位置的机器人姿态通过有限元仿真优化确定. 根据关节限位和干涉情况确定冗余自由度的优化范围并离散,应用机器人反解算法计算每一末端加工位姿对应的机器人姿态.调用相应的机器人仿真分析模型计算外力作用下的滑移变形,输出最小滑移变形对应的机器人姿态.对于中间加工位置处机器人制孔姿态的确定,提出以首末加工姿态为基准的姿态光顺算法,在保证机器人加工位置精度的同时提高机器人的关节运动效率.为考察机器人姿态优化与光顺方法的有效性,设计相应的验证实验.结果表明:优化后程序的制孔位置精度控制在0.2 mm以内,制孔效率从5孔/min提升至6孔/min,实现了机器人自动化制孔精度和效率的提升.
Abstract:
The end effector faces with the problem of sliding movement along workpiece surface due to the structure deformation of robot under the external forces. The property of robot drilling redundancy was exploited to improve the hole position accuracy by optimizing the robot posture to restrain the end effector sliding. The first and last optimal drilling postures could be chosen by finite element simulation. Firstly, the robot postures was calculated by inverse kinematics solution after the optimized range of redundancy freedom was calculated and dispersed. Then, the sliding deformations of the robot in different postures were calculated and compared using the robot simulation model, so that the optimal drilling posture, in which the robot had the minimum deformation, could be obtained. In order to determine other drilling postures,a posture smoothness algorithm based on the first and last optimal drilling postures was proposed, thus guaranteeing the hole position precision and increasing the robot joint motions efficiency. Some experiments were designed to validate the feasibility of the proposed method. Results show that the hole position precision is effectively controlled to be within 0.2 mm and the drilling efficiency increased from 5 holes/min to 6 holes/min. The required precision and high efficiency of robot automatic drilling are realized.
出版日期: 2015-12-31
:  V 19  
基金资助:
国家自然科学基金资助项目(51305395); 中央高校基本科研业务费专项资金资助项目(2015FZA4005, 2014FZA4003).
通讯作者: 章明, 男, 工程师. ORCID: 0000 0003 3529 4259.     E-mail: zhgmg@zju.edu.cn
作者简介: 黄奇伟(1989—), 男, 硕士生,从事机器人制孔加工参数优化研究. ORCID: 0000 0001 9655 3803. E-mail: 18868852422@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.12.004.

HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin. Posture optimization and smoothness for robot drilling. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.12.004.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.12.004        http://www.zjujournals.com/eng/CN/Y2015/V49/I12/2261

[1] DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE (One Sided Cell End Effector) robotic drilling system [C] ∥ SAE 2002 Automated Fastening Conference and Exposition.
Warrendale: SAE, 2002: 2626.
[2] ATKINSON J, HARTMANN J, JONES S, et al. Robotic drilling system for 737 aileron [R]. SAE Technical Paper, 2007.
[3] BI S S, LIANG J. Robotic drilling system for titanium structures [J]. The International Journal of Advanced Manufacturing Technology, 2011, 54(5): 767-774.
[4] 毕树生,梁杰,战强,等.机器人技术在航空工业中的应用[J].航空制造技术,2009, 4: 34-39.
BI Shu sheng, LIANG Jie, ZHAN Qiang,et al. Application of robotics technology in aviation industry [J]. Aeronautical Manufacturing Technology, 2009, 4: 34-39.
[5] 邹方.飞机装配迎来机器人时代[J].航空制造技术,2009, 24: 34-37.
ZOU Fang. Robotic era for aircraft assembly [J]. Aeronautical Manufacturing Technology, 2009, 24: 34-37.
[6] PAN Z X, ZHANG H. Improving robotic machining accuracy by real time compensation [C]∥ International Joint Conference, 2009: 4289-4294.
[7] ZHU W D, QU W W, CAO L H, et al. An off line programming system for robotic drilling in aerospace manufacturing [J]. The International Journal of Advanced Manufacturing
Technology, 2013, 68(9):2535-2545.
[8] 高志慧,贠超,边宇枢.柔性冗余度机器人改善频率特性的研究[J].航空学报, 2004, 25(2): 187-191.
GAO Zhi hui, YUN Chao, BIAN Yu shu. Study on improvement for frequency property of flexible redundant manipulator [J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2):
187-191.
[9] ZARGARBASHI S H H, KHAN W, ANGELES J. The jacobin condition number as a dexterity index in 6R machining robots [J], Robotics and Computer Integrated Manufacturing, 2012, 28(6): 694-699.
[10] 曲巍崴,侯鹏辉,杨根军,等. 机器人加工系统刚度性能优化研究[J].航空学报,2013, 34(12): 2823-2832.
QU Wei wei, HOU Peng hui, YANG Gen jun, et al. Research on the stiffness performance for robot machining systems [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):
2823-2832.
[11] 费少华,方强,柯映林,等.基于压脚位移补偿的机器人制孔锪窝深度控制[J].浙江大学学报:工学版,2012, 46(7): 1157-1161.
FEI Shao hua, FANG Qiang, KE Ying lin, et al. Countersink depth control of robot drilling based on pressure foot displacement compensation [J]. Journal of Zhejiang University:
Engineering Science, 2012, 46(7): 1157-1161.
[12] 董辉跃,曹国顺,曲巍崴,等.工业机器人自动钻孔及锪窝一体化加工[J].浙江大学学报:工学版, 2013,47(2): 201-208.
DONG Hui yue, CAO Guo shun, Qu Wei wei, et al. Processing research of industry robots drilling and countersinking automaticly [J]. Journal of ZhejiangUniversity: Engineering
Science, 2013, 47(2):201-208.
[13] HUO L G, BARON L. The self adaptation of weights for joint limits and singularity avoidance of functionally redundant robotic task [J]. Robotics and Computer Integrated
Manufacturing, 2011, 27(2): 367-376.
[14] ZARGARBASHI S H H, KHAN W, ANGELES J. Posture optimization in robot assisted machining operations [J]. Mechanism and Machine Theory, 2012, 51: 7486.
[15] ABELE E, WEIGOLD M, ROTHENBUCHER S. Modeling and identification of a industrial robot for machining application [J]. CIRP Annals Manufacturing Technology, 2007, 56(1): 387-390.
[16] 赵腾伦,姚新军.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
[17] 曲巍崴,董辉跃,柯映林.机器人辅助飞机装配制孔中位姿精度补偿技术[J].航空学报,2011, 32(10): 1951-1960.
QU Wei wei, DONG Hui yue, KE Ying lin. Pose accuracy compensation technology in robot aided aircraft assembly drilling process [J]. Acta Aeronautica et Astronautica Sinica,
2011, 32(10): 1951-1960.
[18] PENG J Q, XU W F, WANG Z Y, et al. Analytical inverse kinematics and trajectory planning for a 6DOF grinding robot [C] ∥ International Conference on Information and
Automation, 2013: 834-839.
[19] 王嵛,刘浩,田威,等.面向飞机自动化装配的机器人工作姿态规划[J].中国制造业信息化, 2012, 41(13): 50-54.
WANG Yu, LIU Hao, TIAN Wei, et al. The Robot Working Gesture Planning for Aircraft Automatic Assembly [J]. Manufacture Information Engineering of China. 2012, 41(13): 5054.
[20] 季晨.工业机器人姿态规划及轨迹优化研究[D].哈尔滨: 哈尔滨工业大学, 2013.
JI Chen. Research on orientation interpolation and optimal trajectory of industrial robot [D]. Harbin: Harbin Institute of Technology, 2013.
[21] 蔡自兴.机器人学[M].北京:清华大学出版社, 2000.
[22] BAIZID K, CHELLALI R, YOUSNADJ A, et al. Genetic algorithms based method for time optimization in robotized site [C] ∥ The 2010 IEEE/RSJ International Conference on
IROS. Taipei: IEEE, 2010: 1359-1364.
No related articles found!