Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
AM0光谱下三结太阳能电池的温度及聚光特性
饶蕾1, 计春雷2
1.上海电机学院 电子工程系,上海 200240; 2. 上海电机学院 计算机科学系,上海 200240
Triple junction solar cells characteristics under variable temperature and concentration at AM0
RAO Lei1, JI Chun lei2
1. Department of Electronic Engineering, Shanghai Dianji University, Shanghai 200240, China;
2. Department of Computer Science, Shanghai Dianji University, Shanghai 200240, China
 全文: PDF(804 KB)   HTML
摘要:
基于目前广泛使用的单二极管等效电路模型建立三结太阳能电池的仿真模型.以Spectrolab公司的ITJ三结GaInP2/GaInAs/Ge太阳能电池为例,在AM0光谱下,采用黑体辐射理论计算得到各子结电池的短路电流密度,代入该仿真模型计算得到电压 负载电流密度曲线和电压 输出功率曲线.经过对比发现,理论计算结果与Spectrolab公司实验测试得到的ITJ三结太阳能电池的输出性能曲线结果相一致.基于该仿真模型及Spectrolab公司公布的各材料参数值可以计算得到太阳能电池工作在不同温度和聚光条件下的输出特性.从太阳能电池的开路电压来看,随着温度的升高,开路电压下降,而随着聚焦因子的增大,开路电压上升.从太阳能电池的光电转换效率来看,当聚焦因子从1增大到400时,电池转换效率上升,而聚焦因子进一步增大到1 000时,电池转换效率略有下降.结果表明:在温度为28℃、聚光因子为400左右时,ITJ三结太阳能电池在AM0光谱下的光电转换效率达到最大值30.88%.通过该仿真模型可以预测Spectrolab公司的ITJ三结太阳能电池工作在太空中各种环境下的输出性能参数,对空间飞行器的电源系统设计提供可靠数据支持.
Abstract:
A simulation model of triple junction solar cell was established based on the widely used single diode equivalent circuit model. Taking Spectrolab ITJ triple junction
GaInP2/ GaInAs/Ge solar cells as an example, the short circuit current densities of each junction solar cell were calculated using blackbody radiation theory under AM0 spectrum. The results were imported into the simulation model and the voltage load current density curve and voltage output power curve were calculated accordingly. Through comparing, the theoretical results agree well with the experimental results of ITJ triple junction solar cells output characteristics measured by Spectrolab. The output characteristics of the solar cells working under variable temperature and concentrations can be obtained based on the simulation model and material parameters released by Spectrolab. From the aspect of solar cell open voltage, open voltage decreases as temperature rises, while open voltage rises as concentration increases. From the aspect of solar cell photoelectric efficiency, the efficiency is improved when concentration increases from 1 to 400, however, the efficiency drops down slightly as concentration factor further increases to 1000. At 28 °C, the photoelectric conversion efficiency of ITJ triple junction solar cells reaches a maximum value of 30.88% with concentration factor equals 400 under AM0 spectrum. The output performance parameters of the Spectrolab ITJ triple junction solar cells under various environment in space can be predicted through the proposed simulation model, which will provide reliable data supports to the power supply system design of space vehicle.
出版日期: 2015-12-31
:  TM 914  
基金资助:
上海市教育委员会科研创新资助项目(14YZ162);上海市高校青年教师培养资助计划(14AZ20).
作者简介: 饶蕾(1985—),女,讲师,从事太阳能电池研究. ORCID:0000 0001 7399 3224. E-mail: raol@sdju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

饶蕾, 计春雷. AM0光谱下三结太阳能电池的温度及聚光特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.12.005.

RAO Lei, JI Chun lei. Triple junction solar cells characteristics under variable temperature and concentration at AM0. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.12.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.12.005        http://www.zjujournals.com/eng/CN/Y2015/V49/I12/2269

[1] SPINELLI P, FERRY V E, GROEP J, et al. Plasmonic light trapping in thin film Si solar cells [J]. Journal of Optics, 2012, 14:  024002.
[2] International Energy Agency. Technology Roadmap: Solar Photovoltaic Energy 2014 edition [EB/OL]. (2014 09 00)[2015 11 20].
http:∥www.iea.org/publications/freepublications/publication/ technology roadmap solar photovoltaic energy 2014 edition. pdf.
[3] 张永,单智发,蔡建九,等. 空间用GaInP/GaAs/ In0: 3Ga0: 7As(1 eV)倒装三结太阳电池研制 [J].物理学报,2013, 62(15): 158802.
ZHANG Yong, SHAN Zhi fa, CAI Jian jiu, et al. Investigation of inverted metamorphic GaInP/GaAs/In0: 3Ga0: 7As (1 eV) triple junction solar cells for space applications [J].
Acta Physica Sinica, 2013, 62(15):158802.
[4] KURTZ S. Multijunction solar cells for conversion of concentrated sunlight to electricity [J]. Optics Express, 2010, 18: 73.
[5] KING R R, FETZER C M, LAW D C, et al. Advanced Ⅲ V multijunction cells for space [C] ∥ Proceedings of the IEEE 4th World Conference on Photovoltaic Energy Conversion. Hawaii: IEEE, 2006: 1757-1762.
[6] GREEN M A., EMERY K,HISHIKAWA Y, et al. Solar cell efficiency tables (version 34) [J]. Progress in Photovoltaics Research and Applications, 2009, 17: 320-326.
[7] FRAAS L M. The story of the 40 % efficient multijunction solar cell [J]. Low Cost Solar Electric Power, 2014, 8: 97-115.
[8] KING R R, LAW D C, EDMONDSON K M, et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells [J]. Applied Physics Letters, 2007, 90: 183-516.
[9] SEGEV G, MITTELMAN G, KRIBUS A. Equivalent circuit models for triple junction concentrator solar cells [J]. Solar Energy Materials and Solar Cells, 2012, 98: 57-65.
[10] BEN A, APPELBAUM J. Estimation of multi junction solar cell parameters [J]. Progress in Photovoltaics: Research and Applications, 2013, 21: 713-723.
[11] JOHNSON N D. Fundamentals of atmospheric radiation [J]. America Journal of Physics, 2007, 75: 671-698.
[12] RYBICKI G B, LIGHTMAN A P. Radiative processes in astrophysics [M]. New York: John Wiley and Sons, 2004.
[13] MOLDERS N, KRAMM G. Atmospheric radiation [M]. New York: Springer Press, 2014.
[14] JAIN S. The solar system: sun and planets [M]. New York: Springer Press, 2014.
[15] 李友杰.高效三结GaInP2/GaInAs/Ge太阳电池研究[D].上海: 上海交通大学, 2008: 78.
LI You jie. Research of high efficiency triple junction GaInP2/GaInAs/Ge solar cells [D]. Shanghai: Shanghai Jiao Tong University, 2008: 78.
[16] DOMINGUE C, ANTON I, SALA G. Multijunction solar cell model for translating IV characteristics as a function of irradiance, spectrum, and cell temperature [J]. Progress
in Photovoltaics: Research and Applications, 2010, 18: 272-284.
[17] LUQUE A, HEGEDUS S. Handbook of photovoltaic science and engineering [M]. 2nd ed. New York: John Wiley and Sons, 2003.
[18] VURGAFTMAN I, MEYER J R, RAMMOHAN L R. Band parameters for III V compound semiconductor sand their alloys [J]. Journal of Applied Physics, 2001, 89: 5815-5875.
[19] ZHAO C Z, ZHANG R, LIU B, et al. The parameters in the band anticrossing model for InxGa1 xNyP1 y before and after annealing [J]. Science China Physics, Mechanics and
Astronomy, 2011, 54: 2160-2163.
[20] Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface: ASTM G173 03 [S]. Pennsylvania: ASTM International
Incorporated, 2012.
[21] KINSEY G S, HEBERT P, BARBOUR K E, et al. Concentrator multijunction solar cell characteristics under variable intensity and temperature [J]. Progress in Photovoltaics:
Research and Applications, 2008, 16: 503-508.
[22] KINSEY G S, EDMONDSON K M. Spectral response and energy output of concentrator multijunction solar cells [J]. Progress in Photovoltaics: Research and Applications,
2009, 17: 279-288.
[23] BRODERICH L Z, ALBERT B R, PEARSON S B, et al. Design for energy: modeling of spectrum, temperature and device structure dependences of solar cell energy production [J]
. Solar Energy Materials and Solar Cells, 2015, 136: 48-63.
[24] LANA D, GEISZB J F, STEINERB M A, et al. Improved modeling of photoluminescent and electroluminescent coupling in multijunction solar cells [J]. Solar Energy Materials
and Solar Sells, 2015, 143: 48-51.
[25] Spectrolab Incorporated. 26.8% Improved triple junction (ITJ) solar cells [EB/OL]. (2008 04 29)[2015 11 20]. http:∥www.spectrolab.com/ solarcells/tnj.pdf.
[1] 周洁 ,卢晓啸 ,庞志伟,孙志坚. 基于辐射传输方程的稀土辐射器厚度优化分析[J]. J4, 2012, 46(3): 499-502.