Please wait a minute...
J4  2013, Vol. 47 Issue (12): 2234-2242    DOI: 10.3785/j.issn.1008-973X.2013.12.025
计算机技术、轻工业     
定位器模型参考自适应控制系统设计
方强1, 陈利鹏2, 费少华1, 梁青霄3, 李卫平3, 赵金锋3
1. 浙江大学 机械工程学系,浙江 杭州 310027;2. 武汉船用机械有限责任公司,湖北 武汉 430084;
3. 西安飞机工业(集团)有限责任公司,陕西 西安 710089
Model reference adaptive control system design of localizer
FANG Qiang1, CHEN Li-peng2, FEI Shao-hua1, LIANG Qing-xiao3, LI Wei-ping3, ZHAO Jin-feng3
1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; 2.Wuhan Marine Machinery Plant Limited Company, Wuhan 430084, China; 3. Aviation Industry Corporation of China Xi’an Aircraft Industry (Group) Limited Company, Xi’an 710089, China
 全文: PDF  HTML
摘要:

为了消除飞机大部件调姿系统中大部件质量难以在定位器间均衡分配引起的定位器位置伺服控制的不确定性,提出基于模型参考自适应控制的闭环位置伺服控制系统.在控制系统的设计中,根据李雅普诺夫稳定理论求解控制律和自适应律,确定自适应律算法所涉及矩阵的类型.为避免激发系统的高频未建模动态,引入低通滤波器,以保证运动的平稳性和准确性.实验结果证明:基于模型参考自适应控制的伺服系统可以在定位器负载发生变化时保持控制系统性能的一致性,保证动态误差在0~0.05 mm,稳态误差为零.

Abstract:

In the airplane large component pose adjusting system, unbalanced load distribution of large components between three-coordinate localizers can cause systemic uncertainties of the control system, which results in the decrease of dynamic and static position precision. In order to eliminate the negative impact of systemic uncertainties, a close loop servo system based on model reference adaptive control (MRAC) designed for three-coordinate localizer was present. Firstly, the model of signal motion axis was built to get a priori knowledge of the control object. Then the control law and the adaptive law were acquired by Lyapunov method, and the matrixes related to the adaptive law were also chosen properly. In order to suppress the interference of the error vibrations to the position precision, a Butterworth filter was added to the position servo system. The experimental results show that: the new servo control system can eliminate the uncertainties effectively, and also has excellent dynamic response, with the dynamic position error not exceeding 0.05 mm and the static position error is zero.

出版日期: 2013-12-01
:  TP 273  
基金资助:

 国家科技支撑计划资助项目(2011BAF13B10).

通讯作者: 费少华, 男, 助研.     E-mail: f307110@163.com
作者简介: 方强(1975—), 男, 副教授, 主要从事伺服控制技术研究.E-mail: fangqiang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.

FANG Qiang, CHEN Li-peng, FEI Shao-hua, LIANG Qing-xiao, LI Wei-ping. Model reference adaptive control system design of localizer. J4, 2013, 47(12): 2234-2242.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.12.025        http://www.zjujournals.com/eng/CN/Y2013/V47/I12/2234

[1] 邹冀华, 刘志存, 范玉青.大型飞机部件数字化对接装配技术研究[J].计算机集成制造系统, 2007, 13(7): 1367-1373.

ZOU Ji-hua, LIU Zhi-cun, FAN Yu-qing. Large-size airplane parts digital assembly technology [J]. Computer Integrated Manufacturing Systems, 2007, 13(7): 1367-1373.

[2] JOHN C, PING H, SHANKAR S. Adaptive control of mechanical manipulators [J]. International Journal of Robotics Research, 1987, 6(2): 16-28.

[3] KOIVO A J, GUO T K. Adaptive controller of robotic manipulator [J]. Decision and Control, 1981, 1: 271-276.

[4] KAELLSTROM G, ASTROM J, THORELL E. Adaptive autopilots for tankers[J]. Automatica, 1979, 15(1): 241-254.

[5] HAUSER E. Approximate tracking for nonlinear systems with application to flight control[D]. Berkeley: University of California, 1989.

[6] KIM K H. Model reference adaptive control-based adaptive current control scheme of a PM synchronous motor with an improved servo performance [J]. IET Electric Power Applications, 2009, 3(1): 8-18.

[7] KOKSAL M, YENICI F, ASYA N. Position control of a permanent magnet DC motor by model reference adaptive control [C]∥ IEEE Intermational Symposium on Industrial Electronics. Piscataway: IEEE, 2007: 112-117.

[8] EIELSEN A, GRAVDAHL T. Adaptive control of a nanopositioning device [C]∥ Proceedins of the IEEE conference on Decision and Control. Piscataway: IEEE, 2012: 5065-5072.

[9] LEKSONO E, PRATIKTO. Adaptive speed control of induction motor with DSP implementation [C]∥ Industrial Electronics Conference. Piscataway: IEEE, 2004: 1423-1428.

[10] 阮毅,陈维钧.运动控制系统[M].北京: 清华大学出版社, 2006: 4-3.

[11] SLOTINE E, LI Wei-ping. 应用非线性控制系统[M]. 北京: 机械工业出版社, 2006: 210-229.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[3] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[6] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[7] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[8] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[9] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[10] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[11] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[12] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[13] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[14] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.
[15] 邹涛, 李海强. 具有积分环节多变量系统的双层结构预测控制[J]. J4, 2011, 45(12): 2079-2087.