电气工程、机械工程 |
|
|
|
|
耦合风电场参数化模型的天气预报模式对风资源的评估和验证 |
王强( ),罗坤*( ),吴春雷,樊建人 |
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027 |
|
Wind resource assessment of weather research and forecasting model coupled with wind farm parameterization model |
Qiang WANG( ),Kun LUO*( ),Chun-lei WU,Jian-ren FAN |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
引用本文:
王强,罗坤,吴春雷,樊建人. 耦合风电场参数化模型的天气预报模式对风资源的评估和验证[J]. 浙江大学学报(工学版), 2019, 53(8): 1572-1581.
Qiang WANG,Kun LUO,Chun-lei WU,Jian-ren FAN. Wind resource assessment of weather research and forecasting model coupled with wind farm parameterization model. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1572-1581.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.08.016
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I8/1572
|
1 |
REN G, LIU J, WAN J, et al Overview of wind power intermittency: impacts, measurements, and mitigation solutions[J]. Applied Energy, 2017, 204: 47- 65
doi: 10.1016/j.apenergy.2017.06.098
|
2 |
祁和生, 胡书举 分布式利用是风能发展的重要方向[J]. 中国科学院院刊, 2016, (2): 173- 181 QI He-sheng, HU Shu-ju Distributed application is an important direction for wind energy development[J]. Bulletin of Chinese Academy of Sciences, 2016, (2): 173- 181
|
3 |
LIU J, GAO C, REN J, et al Wind resource potential assessment using a long term tower measurement approach: a case study of Beijing in China[J]. Journal of Cleaner Production, 2018, 174: 917- 926
doi: 10.1016/j.jclepro.2017.10.347
|
4 |
GIANNAROS T, MELAS D, ZIOMAS I Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece[J]. Renewable Energy, 2017, 102: 190- 198
doi: 10.1016/j.renene.2016.10.033
|
5 |
KHAIN A, LYNN B, SHPUND J High resolution WRF simulations of Hurricane Irene: sensitivity to aerosols and choice of microphysical schemes[J]. Atmospheric Research, 2016, 167: 129- 145
doi: 10.1016/j.atmosres.2015.07.014
|
6 |
JIMENEZ B, DURANTE F, LANGE B, et al Offshore wind resource assessment with WAsP and MM5: comparative study for the German Bight[J]. Wind Energy, 2007, 10 (2): 121- 134
doi: 10.1002/(ISSN)1099-1824
|
7 |
LU Y, TANG J, WANG Y, et al. Using the MM5 model for wind energy resources evaluation over a fuel-poor region, East China [C]// Asia-Pacific Power and Energy Engineering Conference. [S.l.]: IEEE, 2009: 1-6.
|
8 |
LAZIC L, PEJANOVIC G Wind forecasts for wind power generation using the Eta model[J]. Renewable Energy, 2010, 35 (6): 1236- 1243
doi: 10.1016/j.renene.2009.10.028
|
9 |
ZHAO P, WANG J, XIA J, et al Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China[J]. Renewable Energy, 2012, 43 (10): 234- 241
|
10 |
WANG C, JIN S Error features and their possible causes in simulated low-level winds by WRF at a wind farm[J]. Wind Energy, 2014, 17 (9): 1315- 1325
|
11 |
王澄海, 胡菊, 靳双龙, 等 中尺度WRF模式在西北西部地区底层风场模拟中的应用和检验[J]. 干旱气象, 2011, 29 (2): 161- 167 WANG Cheng-hai, HU Ju, JIN Shuang-long, et al Application and test of lower level wind field simulation with meso-scale model WRF in western region of Northwest China[J]. Journal of Arid Meteorology, 2011, 29 (2): 161- 167
doi: 10.3969/j.issn.1006-7639.2011.2.006
|
12 |
ZHANG F, YANG Y, WANG C The effects of assimilating conventional and ATOVS data on forecasted near-surface wind with WRF-3DVAR[J]. Monthly Weather Review, 2015, 143: 153- 64
doi: 10.1175/MWR-D-14-00038.1
|
13 |
张飞民, 王澄海 利用WRF-3DVAR同化常规观测资料对近地层风速预报的改进试验[J]. 高原气象, 2014, 33 (3): 675- 685 ZHANG Fei-ming, WANG Cheng-hai Experiment of surface-layer wind forecast improvement by assimilating conventional data with WRF-3DVAR[J]. Plateau Meteorology, 2014, 33 (3): 675- 685
doi: 10.7522/j.issn.1000-0534.2012.00198
|
14 |
AMJAD M, ZAFAR Q, KHAN F, et al Evaluation of weather research and forecasting model for the assessment of wind resource over Gharo, Pakistan[J]. International Journal of Climatology, 2015, 35 (8): 1821- 1832
doi: 10.1002/joc.2015.35.issue-8
|
15 |
DRAXL C, HAHMANN A, PENA A, et al Evaluating winds and vertical wind shear from weather research and forecasting model forecasts using seven planetary boundary layer schemes[J]. Wind Energy, 2014, 17 (1): 39- 55
doi: 10.1002/we.v17.1
|
16 |
CARVALHOAABC D A sensitivity study of the WRF model in wind simulation for an area of high wind energy[J]. Environmental Modelling and Software, 2012, 33 (7): 23- 34
|
17 |
FITCH A C, OLSON J B, LYBDQYUST J K, et al Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model[J]. Monthly Weather Revie, 2012, 140 (9): 3017- 3038
doi: 10.1175/MWR-D-11-00352.1
|
18 |
王勇, 王澄海, 陶健红, 等 甘肃酒泉地区近地层风场特征[J]. 干旱气象, 2012, 30 (3): 393- 403 WANG Yong, WANG Cheng-hai, TAO Jian-hong, et al Characteristics of wind field near ground layer in Jiuquan of Gansu Province[J]. Journal of Arid Meteorology, 2012, 30 (3): 393- 403
|
19 |
SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3 [R]. Boulder: U.S. National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Division, 2008: 7-25.
|
20 |
CARVALHO D, ROCHA A, GOMEZ M, et al Offshore wind energy resource simulation forced by different reanalyses: comparison with observed data in the Iberian Peninsula[J]. Applied Energy, 2014, 134: 57- 64
doi: 10.1016/j.apenergy.2014.08.018
|
21 |
JIMENEZ P A, NAVARRO J, PALOMARES A M, et al Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: a composite-based analysis with the weather research and forecasting model over Horns Rev[J]. Wind Energy, 2015, 18 (3): 559- 566
doi: 10.1002/we.v18.3
|
22 |
NA J S, KOO E, MUNOZ D, et al Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer[J]. Energy, 2016, 95: 79- 90
doi: 10.1016/j.energy.2015.11.040
|
23 |
HONG S Y A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134 (9): 2318
doi: 10.1175/MWR3199.1
|
24 |
MLAWER E, TAUBMAN S, BROWN P, et al Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long-wave[J]. Journal of Geophysical Research Atmospheres, 1997, 102 (D14): 16663- 16682
doi: 10.1029/97JD00237
|
25 |
FOUQUART Y, BONNEL B, RAMASWAMY V Intercomparing shortwave radiation codes for climate studies[J]. Journal of Geophysical Research Atmospheres, 1991, 96 (D5): 8955- 8968
doi: 10.1029/90JD00290
|
26 |
GRELL G A, DEVENYI D A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29 (6): 587- 590
|
27 |
NAKAKANISHI M, NIINO H Development of an improved turbulence closure model for the atmospheric boundary layer[J]. Journal of the Meteorological Society of Japan, 2009, 87 (5): 895- 912
|
28 |
XIA G, CERVARICH M C, ROY S B, et al Simulating impacts of real-world wind farms on land surface temperature using the WRF model: validation with observations[J]. Monthly Weather Review, 2017, 145: 4813- 36
doi: 10.1175/MWR-D-16-0401.1
|
29 |
ABKAR M, PORTE F A new wind-farm parameterization for large-scale atmospheric models[J]. Journal of Renewable and Sustainable Energy, 2015, 7 (1): 013121
|
30 |
WANG Q, LUO K, YUAN R, et al Wake and performance interference between adjacent wind farms: case study of Xinjiang in China by means of mesoscale simulations[J]. Energy, 2019, 166: 1168- 1180
|
31 |
JIMENEZ P A, DUDHIA J Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model[J]. Journal of Applied Meteorology and Climatology, 2012, 51: 300- 16
doi: 10.1175/JAMC-D-11-084.1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|