Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2068-2076    DOI: 10.3785/j.issn.1008-973X.2018.11.004
土木与水利工程     
基于砂土状态和细观特征的剪切带倾角公式
胡成宝1,2,3, 凌道盛1,2,3, 巩师林1,2,3, 石吉森1,2, 韩超4, 丁志锋4
1. 浙江大学 岩土工程研究所, 浙江 杭州 310058;
2. 浙江大学 软弱土与环境土工教育部重点实验室, 浙江 杭州 310058;
3. 浙江大学 宁波理工学院 土木建筑工程学院, 浙江 宁波 315100;
4. 国网江苏省电力公司经济技术研究院, 江苏 南京 210008
Formula for inclination angle of shear band based on soil state and microscopic characteristics in sands
HU Cheng-bao1,2,3, LING Dao-sheng1,2,3, GONG Shi-lin1,2,3, SHI Ji-sen1,2, HAN Chao4, DING Zhi-feng4
1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China;
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;
3. School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
4. State Grid Jiangsu Economic Research Institute, Nanjing 210008, China
 全文: PDF(1233 KB)   HTML
摘要:

剪切带扩展方向的确定是岩土体渐进破坏分析的关键.系统收集国内外文献中各类砂土剪切带倾角的平面应变试验结果,将其与现有的剪切带倾角计算方法的结果进行对比,发现现有方法的计算值与试验值偏离较大,计算误差不可忽略.提出考虑砂土颗粒形状、密实度和有效平均正应力等影响因素的剪切带倾角经验公式,表征各类砂土破裂发展方向,定量描述土体状态对剪切带倾角的影响.提出的公式适用于各类砂土的剪切带倾角计算,公式各参数物理意义明确,且均可由常规物性试验和室内单元体试验测得.研究表明,由提出的公式得到的理论值与试验值偏差基本在-5°~5°,平均误差、标准误差和均方误差等统计指标约为现有其他方法的1/3,且不同密实度或有效平均正应力下的倾角变化规律与试验结果一致.

Abstract:

The determination of shear band propagation direction is the key to the progressive failure analysis of rock and soil mass. The plane strain test results for inclination angles of shear band in various sands reported in literatures at home and abroad were collected systematically. Comparison of the calculated values of existing methods with experimental measurements showed that the calculated values seriously deviated from the test values and the errors cannot be neglected. A new empirical formula for inclination angle of shear band considering the influence of sand particle shape, density and effective mean normal stress was proposed to characterize the rupture direction of various sands and to quantitatively describe the influence of soil state on inclination angle. The formula is suitable for various sands, and all parameters determined by common phsical property tests and laboratory tests have explicit physical meaning. Results showed that the errors between the test values and the calculated values obtained from the proposed empirical formula were smaller than 5° and the statistical indices, such as the average, standard error and mean square error, are 1/3 of the results of the existing methods. In addition, the predicted variations of shear band inclination angles with different effective mean normal stresses or densities are in good agreement with the test results.

收稿日期: 2017-09-14 出版日期: 2018-11-22
CLC:  TU43  
基金资助:

国家重点研发计划项目(2016YFC0800200);国家“973”重点基础研究发展计划项目(2014CB047000);国家自然科学基金资助项目(51578502)

通讯作者: 凌道盛,男,教授.orcid.org/0000-0002-0604-1175.     E-mail: dsling@zju.edu.cn
作者简介: 胡成宝(1990-),男,博士生,主要从事计算土力学与土动力学研究.orcid.org/0000-0002-4908-8790.E-mail:11412027@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

胡成宝, 凌道盛, 巩师林, 石吉森, 韩超, 丁志锋. 基于砂土状态和细观特征的剪切带倾角公式[J]. 浙江大学学报(工学版), 2018, 52(11): 2068-2076.

HU Cheng-bao, LING Dao-sheng, GONG Shi-lin, SHI Ji-sen, HAN Chao, DING Zhi-feng. Formula for inclination angle of shear band based on soil state and microscopic characteristics in sands. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2068-2076.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.004        http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2068

[1] 凌道盛, 涂福彬, 卜令方. 基于黏聚区域模型的边坡渐进破坏过程强化有限元分析[J]. 岩土工程学报, 2012, 34(8):1387-1393 LING Dao-sheng, TU Fu-bin, BU Ling-fang. Enhanced finite element analysis of progressive failure of slopes based on cohesive zone model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8):1387-1393
[2] DESRUES J, VIGGIANI G. Strain localization in sand:an overview of the experimental results obtained in Grenoble using stereophotogrammetry[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(4):279-321.
[3] WANG Q, LADE P. Shear banding in true triaxial tests and Its effect on failure in sand[J]. Journal of Engineering Mechanics, 2001, 127(8):754-761.
[4] ZHUANG L, NAKATA Y, KIM U, et al. Influence of relative density, particle shape, and stress path on the plane strain compression behavior of granular materials[J]. Acta Geotechnica, 2014, 9(2):241-255.
[5] ALSHIBLI K, STURE S. Shear band formation in plane strain experiments of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(6):495-503.
[6] RUDNICKI J, RICE J. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6):371-394.
[7] MOLENKAMP F. Comparison of frictional material models with respect to shear band initiation[J]. Géotechnique, 1985, 35(2):127-143.
[8] HAN C, DRESCHER A. Shear bands in biaxial tests on dry coarse sand[J]. Soils and Foundations, 1993, 33(1):118-132.
[9] BARDET J. Orientation of shear bands in frictional soils[J]. Journal of Engineering Mechanics, 1991, 117(7):1466-1485.
[10] PAPARNICHOS E, VARDOULAKIS I. Shear band formation in sand according to model[J]. Géotechnique, 1995, 45(4):649-661.
[11] 钱建固, 黄茂松. 土体变形分叉的非共轴理论[J]. 岩土工程学报, 2004, 26(4):777-781 QIAN Jian-gu, HUANG Mao-song. Non-coaxiality for deformation bifurcation non-coaxial plasticity in soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4):777-781
[12] 黄茂松, 扈萍, 钱建固. 基于材料状态相关砂土临界状态理论的应变局部化分析[J]. 岩土工程学报, 2008, 30(8):1133-1139 HUANG Mao-song, HU Ping, QIAN Jian-gu. Strain localization of sand based on a state-dependent critical state model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8):1133-1139
[13] DUNSTAN T, ARTHUR J, ALANIA, et al. Plastic deformation and failure in granular media[J]. Géotechnique, 1977, 27(1):53-74.
[14] DESRUES J, HAMMAD W. Shear band dependency on mean stress level in sand[C]//Proceeding of 2nd International Workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies. Gdansk:Technical University of Gdansk, 1989:57-67.
[15] VARDOULAKIS I. Shear band inclination and shear modulus of sand in biaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4(2):103-119.
[16] JANG E, JUNG Y, KIM J, et al. Assessment of shear band characteristics in granular soils using digital image analysis for plane strain tests[J]. Journal of the Korean Geotechnical Society, 2011, 27(4):51-65.
[17] RECHENMACHER A. Digital image correlation to evaluate shear banding in dilative sands[J]. Geotechnical Testing Journal, 2004, 27(1):1-10.
[18] YOSHIDA T, TATSUOKA F, SSIDDIQUEE M, et al. Shear banding in sands observed in plane strain compression[C]//Proceedings of the 3rd Workshop Localization and Bifurcation Third for Soils and Rocks. Grenoble:[s. n.], 1993:165-179.
[19] BARDET J. A comprehensive review of strain localization in elastoplastic soils[J]. Computers and Geotechnics, 1990, 10(3):163-188.
[20] VAID Y, SASITHARAN S. The strength and dilatancy of sand[J]. Canadian Geotechnical Journal, 1992, 29(3):522-526.
[21] CINICIOGLU O, ABADKON A. Dilatancy and friction angles based on in situ soil conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4):1-7.
[22] CHO G, DODDS J, SANTAMARINA J. Particle shape effects on packing density, stiffness, and strength:natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5):591-602.
[23] Tatsuoka F, Nakamura S, Huang C, et al. Strength anisotropy and shear band direction in plane strain tests of sand[J]. Soils and Foundations, 1990, 30(1):35-54.
[24] 庄丽, 宫全美. 减围压平面应变压缩试验条件下丰浦砂中剪切带特性研究[J]. 岩土力学, 2016(增1):201-208. ZHUANG Li, GONG Quan-mei. Shear band characteristics of Toyoura sand in plane strain compression with decreasing confining pressure[J]. Rock and Soil Mechanics, 2016(supp.1):201-208.
[25] NAKARNURA S. Strain distribution of sand specimen in plane strain compression test[D]. Tokyo:University of Tokyo, 1987.

[1] 董文悝, 高广运, 宋健, 薛帅. 近断层滑冲效应脉冲地震动对场地液化的影响[J]. 浙江大学学报(工学版), 2018, 52(9): 1651-1657.
[2] 刘俊伟, 朱娜, 王立忠, 尚文昌. 循环荷载下砂与钢板界面的弱化机制[J]. 浙江大学学报(工学版), 2018, 52(6): 1123-1130.
[3] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.