Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (2): 406-412    DOI: 10.3785/j.issn.1008-973X.2018.02.024
计算机技术     
基于块效应抑制的压缩降质模糊图像盲复原
叶鹏钊, 冯华君, 徐之海, 李奇, 陈跃庭
浙江大学 现代光学仪器国家重点实验室, 浙江 杭州 310027
Blind restoration of compressed degraded image based onblock effect suppression
YE Peng-zhao, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting
State Key Laboratory of Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3955 KB)   HTML
摘要:

针对被压缩重构后的模糊图像复原问题,提出基于块效应抑制的图像去模糊方法.采用多尺度分解逐层进行模糊核估计,每一层利用去块效应的模糊图像作为有效显著边缘估计的参考图像,并在模糊核估计优化函数中加入模糊核梯度约束保证其连续平滑性,通过在频域交替迭代优化确定模糊核.最终复原约束项为图像全变分以及L2范数块效应抑制项,该项通过迭代使得复原图像和去块效应图像逐步逼近.实验结果表明,提出的方法能够在较高压缩率的模糊图像中估计出相对准确的模糊核,得到兼顾消除块效应与保留图像细节的复原效果.

Abstract:

An image deblurring algorithm based on block effect suppression was proposed for compressed degraded blur image. Multi-scale decomposition was adopted layer by layer in the kernel estimation stage. The blurred image whose block artifacts were removed was used as the reference image in the effective significant edge estimation in each layer. Then the kernel gradient norm constraint was added in the kernel estimation optimization function to ensure that the kernel's shape was continuous and smooth. The kernel was determined by alternately iterative optimization in frequency domain. Final restoration constraints were image total variation and the L2 norm block suppression terms. The L2 term made the restoration image and the block effect eliminated image approach during iteration. Experimental results show that the proposed method can estimate relatively accurate kernel even when the blur image compression rate is high, and can acquire a satisfied restored image with block effect eliminated and image details preserved.

收稿日期: 2016-11-26 出版日期: 2018-03-09
CLC:  TP391  
基金资助:

国家自然科学基金资助项目(61550003).

通讯作者: 冯华君,男,教授,博导.orcid.org/0000-0002-5606-6637.     E-mail: fenghj@zju.edu.cn
作者简介: 叶鹏钊(1989-),男,博士生,从事光学成像,图像复原等研究.orcid.org/0000-0003-2925-391X.E-mail:yepz@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

叶鹏钊, 冯华君, 徐之海, 李奇, 陈跃庭. 基于块效应抑制的压缩降质模糊图像盲复原[J]. 浙江大学学报(工学版), 2018, 52(2): 406-412.

YE Peng-zhao, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Blind restoration of compressed degraded image based onblock effect suppression. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 406-412.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.02.024        http://www.zjujournals.com/eng/CN/Y2018/V52/I2/406

[1] FERGUS R, SINGH B, HERTZMANN A, et al. Removing camera shake from a single photograph[J]. Acm Transactions on Graphics, 2006, 25(3):787-794.
[2] SHAN Q, JIA J, AGARWALA A. High-quality motion deblurring from a single image[J]. Acm Transactions on Graphics, 2008, 27(3):15-19.
[3] KRISHNAN D, TAY T, FERGUS R. Blind deconvolution using a normalized sparsity measure[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence:IEEE, 2011:233-240.
[4] CHO S, LEE S. Fast motion deblurring[J]. Acm Transactions on Graphics, 2009, 28(5):89-97.
[5] JIA J, XU L.Two-phase kernel estimation for robust motion deblurring[C]//European Conference on Computer Vision. Greece:[s.n.], 2010:81-84.
[6] XU L, ZHENG S, JIA J. Unnatural L0 sparse representation for natural image deblurring[C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington:IEEE, 2013:1107-1114.
[7] DONG Wen-de, FENG Hua-jun, XU Zhi-hai, et al. Blind image deconvolution using the Fields of Experts prior[J]. Optics Communications, 2012, 285(24):5051-5061.
[8] LAI Wei-sheng, DING Jian-jiun, LIN Yen-yu, et al. Blur kernel estimation using normalized color-line priors[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:64-72.
[9] ZUO W, REN D, ZHANG D, et al. Learning iteration-wise generalized shrinkage-thresholding operators for blind deconvolution[J].IEEE Transactions on Image Processing, 2016, 25(4):1751-1764.
[10] 王国栋,徐洁,潘振宽,等. 基于归一化超拉普拉斯先验项的运动模糊图像盲复原[J]. 光学精密工程,2013,21(5):1340-1348. WANG Guo-dong, XU Jie, PAN Zhen-kuan, et al. Blind image restoration based on normalized hyper laplacian prior term[J]. Optics and Precision Engineering, 2013, 21(5):1340-1348.
[11] ZHANG X, WANG R, TIAN Y, et al. Image deblurring using robust sparsity priors[C]//IEEE Conference on Image Processing. Quebec:IEEE:2015:138-142.
[12] MICHAELI T, IRANI M. Blind deblurring using internal patch recurrence[J].European Conference on Computer Vision. Zurich:[s.n.], 2014:783-798.
[13] FOI A, KATKOVNIK V, EGIAZARIAN K. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color Images[J]. IEEE Transactions on Image Processing, 2007, 16(5):1395-1411.
[14] LUO Y, WARD R K. Removing the blocking artifacts of block-based DCT compressed images[J]. IEEE Transactions on Image Processing, 2003, 12(7):838-42.
[15] WEERASINGHE C, LIEW W C, YAN H. Artifact reduction in compressed images based on region homogeneity constraints using the projection onto convex sets algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(10):891-897.
[16] LEVIN A, WEISS Y, DURAND F, et al. Understanding and evaluating blind deconvolution algorithms[C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE, 2009:1964-1971.
[17] TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C]//IEEE International Conference on Computer Vision. Washington:IEEE, 1998:839-846.
[18] OSHER S, RUDIN L I. Feature-oriented image enhancement using shock filters[J]. Siam Journal on Numerical Analysis, 1990, 27(4):919-940.
[19] WANG Z, BOVICK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.

[1] 韩勇, 宁连举, 郑小林, 林炜华, 孙中原. 基于社交信息和物品曝光度的矩阵分解推荐[J]. 浙江大学学报(工学版), 2019, 53(1): 89-98.
[2] 郑洲, 张学昌, 郑四鸣, 施岳定. 基于区域增长与统一化水平集的CT肝脏图像分割[J]. 浙江大学学报(工学版), 2018, 52(12): 2382-2396.
[3] 赵丽科, 郑顺义, 王晓南, 黄霞. 单目序列的刚体目标位姿测量[J]. 浙江大学学报(工学版), 2018, 52(12): 2372-2381.
[4] 何杰光, 彭志平, 崔得龙, 李启锐. 局部维度改进的教与学优化算法[J]. 浙江大学学报(工学版), 2018, 52(11): 2159-2170.
[5] 李志, 单洪, 马涛, 黄郡. 基于反向标签传播的移动终端用户群体发现[J]. 浙江大学学报(工学版), 2018, 52(11): 2171-2179.
[6] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[7] 魏小峰, 程承旗, 陈波, 王海岩. 基于独立边数的链码方法[J]. 浙江大学学报(工学版), 2018, 52(9): 1686-1693.
[8] 陈荣华, 王鹰汉, 卜佳俊, 于智, 高斐. 基于KNN算法与局部回归的网站无障碍采样评估[J]. 浙江大学学报(工学版), 2018, 52(9): 1702-1708.
[9] 张承志, 冯华君, 徐之海, 李奇, 陈跃庭. 图像噪声方差分段估计法[J]. 浙江大学学报(工学版), 2018, 52(9): 1804-1810.
[10] 刘洲洲, 李士宁, 李彬, 王皓, 张倩昀, 郑然. 基于弹性碰撞优化算法的传感云资源调度[J]. 浙江大学学报(工学版), 2018, 52(8): 1431-1443.
[11] 王勇超, 祝凯林, 吴奇轩, 鲁东明. 基于局部渲染的高精度模型自适应展示技术[J]. 浙江大学学报(工学版), 2018, 52(8): 1461-1466.
[12] 孙念, 李玉强, 刘爱华, 刘春, 黎威威. 基于松散条件下协同学习的中文微博情感分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1452-1460.
[13] 郑守国, 崔雁民, 王青, 杨飞, 程亮. 飞机装配现场数据采集平台设计[J]. 浙江大学学报(工学版), 2018, 52(8): 1526-1534.
[14] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.
[15] 张廷蓉, 滕奇志, 李征骥, 卿粼波, 何小海. 岩心三维CT图像超分辨率重建[J]. 浙江大学学报(工学版), 2018, 52(7): 1294-1301.