Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (12): 2408-2413    DOI: 10.3785/j.issn.1008-973X.2017.12.013
机械与动力工程     
基于Boltzmann矩方程的扩展速度滑移边界条件
杨琴1, 张海军2, 沈剑英2, 刘宇陆3
1. 嘉兴学院 数理与信息工程学院, 浙江 嘉兴 314001;
2. 嘉兴学院 机电工程学院, 浙江 嘉兴 314001;
3. 上海大学 应用数学与力学研究所, 上海 200072
Extended velocity slip boundary condition based on Boltzmann moment equations
YANG Qin1, ZHANG Hai-jun2, SHEN Jian-ying2, LIU Yu-lu3
1. College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China;
2. College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001, China;
3. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
 全文: PDF(1269 KB)   HTML
摘要:

针对半空间流,从R13矩方程出发,基于壁面附近Knudsen层外Knudsen层的修正效应近似为零的条件,理论推导得到等温情形下扩展的速度滑移边界条件.该速度滑移边界条件的滑移系数是不固定的,不仅与气流的努森数有关,还与壁面适应系数有关.以微Poiseuille流为例,分析扩展的速度滑移边界条件的适用性.研究表明,在近过渡流区,扩展的速度滑移边界情形下的质量流率与基于Boltzmann-硬球分子模型方程的结果更为接近,优于现有文献中的速度滑移边界条件.当努森数为1时,扩展的速度滑移边界条件情形下的气流速度与直接模拟Monte Carlo(DSMC)模拟结果之间的差别仍然较大.

Abstract:

An extended velocity slip boundary condition for half space gas flow was derived theoretically from R13 moment equations based on the fact that the correction effect of Knudsen layer beyond the Knudsen layer is almost zero. The slip coefficients of extended velocity slip boundary condition was not fixed, which was not only related to the Knudsen number, but also the wall accommodation coefficient. Micro Poiseuille gas flow was considered to analyze the validity of extended velocity slip boundary condition. The research shows that the extended velocity slip boundary condition is superior to the existing velocity slip boundary conditions in literatures and the mass flow rate calculated according to the extended velocity slip boundary condition is more closer to the results from linearized Boltzmann-hard sphere molecular model equation in the early transition flow regime. When the Knudsen number equals to 1, the velocity profile of micro channel flow still shows a large discrepancy from the results of direct simulation Monte Carlo (DSMC) method.

收稿日期: 2016-10-11 出版日期: 2017-11-22
CLC:  V211  
基金资助:

国家自然科学基金资助项目(11102071);国家留学基金资助项目(201208330295).

作者简介: 杨琴(1980-),女,讲师,博士,从事微流体力学研究.orcid.org/0000-0002-3781-8899.Email:zxsa9@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨琴, 张海军, 沈剑英, 刘宇陆. 基于Boltzmann矩方程的扩展速度滑移边界条件[J]. 浙江大学学报(工学版), 2017, 51(12): 2408-2413.

YANG Qin, ZHANG Hai-jun, SHEN Jian-ying, LIU Yu-lu. Extended velocity slip boundary condition based on Boltzmann moment equations. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2408-2413.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.12.013        http://www.zjujournals.com/eng/CN/Y2017/V51/I12/2408

[1] 樊菁,沈青.微尺度气体流动[J].力学进展,2002,32(3):321-336. FAN Jing,SHEN Qing. Micro-scale gas flows[J].Advances in Mechanics, 2002, 32(3):321-336.
[2] 沈青.稀薄气体动力学[M].北京:国防工业出版社,2003:1-6.
[3] 李志辉,张涵信.基于Boltzmann模型方程的气体运动论统一算法研究[J].力学进展,2005,35(4):559-576. LI Zhi-hui,ZHANG Han-xin. Study on gas kinetic numerical algorithm using Boltzmann model equation[J]. Advances in Mechanics, 2005, 35(4):559-576.
[4] 李志辉,张涵信,符松.用于Poiseuille等微槽道流的Boltzmann模型方程算法研究[J].中国科学G辑,2005,35(3):271-291. LI Zhi-hui,ZHANG Han-xin,FU Song. Study on Boltzmann model equation algorithm applied in micro channel flows[J]. Science in China Serial G Physics, Mechanics and Astronomy, 2005, 35(3):271-291.
[5] 李志辉,蒋新宇,吴俊林,等.转动非平衡玻尔兹曼模型方程统一算法与全流域绕流计算应用[J].力学学报,2014,46(3):336-351. LI Zhi-hui,JIANG Xin-yu,WU JUN-lin,et al. Gas-kinetic unified algorithm for Boltzmann model equation in rotational nonequilibrium and its application to the whole range flow regimes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):336-351.
[6] MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170:231-256.
[7] CERCIGNANI C. Higher order slip according to the linearized Boltzmann equation[R]. Institute of Engineering Research Report AS-64-19,Berkeley:University of California,1964.
[8] DEISSLER R G. An analysis of second-order slip flow and temperature jump boundary conditions for rarefied gases[J]. International Journal of Heat and Mass Transfer,1964,7:681-694.
[9] HSIA Y T,DOMOTO G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. Journal of Lubrication Technology, 1983, 105(1):120-130.
[10] BESKOK A,KARNIADAKIS G E. A model for flows in channels, pipes and ducts at micro and nano scales. Microscale Thermophysics Engineering, 1999, 3(1):43-77.
[11] CERCIGNANI C, LORENZANI S. Variational derivation of second-order slip coefficients on the basis of the Boltzmann equation for hard-sphere molecules[J]. Physics of Fluids, 2010, 22:062004.
[12] GIBELLI L. Velocity slip coefficients based on the hard-sphere Boltzmann equation[J]. Physics ofFluids, 2012, 24:022001.
[13] GUO Z,QIN J,SHI B. Generalized second-order slip boundary condition for nonequilibrium gas flows[J]. Physical Review E, 2014,89:013021.
[14] 郭照立,郑楚光,施保昌.微尺度流动的扩展二阶滑移边界条[J].工程热物理学报,2009,30(8):1383-1385. GUO Zhao-li,ZHENG Chu-guang,SHI Bao-chang. An extended second order slip boundary condition for micro flows[J]. Journal of Engineering Thermophysics, 2009, 30(8):1383-1385.
[15] SCHAMBERG R. The fundamental differential equations and the boundary conditions for high speed slip flow and their application to several specific problems[D]. Pasadena:California Institute of Technology,1947.
[16] SHEN S,CHEN G. A kinetic-theory based first order slip boundary condition for gas flow[J]. Physics of Fluids, 2007, 19(8):086101.
[17] 张海军,祝长生,杨琴,等.广义的Maxwell速度滑移边界模型[J].中国科学:物理学,力学和天文学,2013,43:662-669. ZHANG Hai-jun, ZHU Chang-sheng, YANG Qin, et al. Generalized Maxwell velocity slip boundary model[J]. Science in China Serial G Physics, Mechanics & Astronomy, 2013, 43:662-669.
[18] ZHANG W M, MENG G, WEI X Y. A review on slip models for gas microflows[J]. Microfluidics and Nanofluidics, 2012, 13:845-882.
[19] 谢翀,樊菁.Navier-Stokes方程二阶速度滑移边界条件的检验[J].力学学报,2007,39(1):1-6. XIE Chong, FAN Jing. Assessment of second-order velocity slip boundary conditions of the Navier-Stokesequations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007,39(1):1-6.
[20] STRUCHTRUP H. Macroscopic transport equations for rarefied gas flows[M]. Berlin:Springer, 2005.
[21] GRAD H. On the kinetic theory of rarefied gases[J]. Communications on Pure and Applied Mathematics, 1949,2:331-407.
[22] 查普曼S,考林TG.非均匀气体的数学理论[M].北京:科学出版社,1985:149-160.
[23] 蔡振宁.气体动理学中数值矩方法的算法研究与应用[D].北京:北京大学,2013. CAI Zhen-ning. Investigations and applications of the numerical moment method in the kinetic theory of gases[D]. Beijing:Peking University, 2013.
[24] STRUCHTRUP H, TORRIHON M. Regularization of Grad's 13 moment equations:derivation and linearanalysis[J]. Physics of Fluids, 2003,15:2668-2880.
[25] GU X J,EMERSON D R. A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions[J]. Journal of Computational Physics, 2007, 225:263-283.
[26] TORRIHON M,STRUCHTRUP H. Boundary conditions for regularized 13-moment-equations for micro-channel-flows[J]. Journal of Computational Physics, 2008,227:1982-2011.
[27] GUPTA V K,TORRIHON M. Higher order moment equations for rarefied gas mixtures[J]. Proceedings of the Royal Society A:Mathematical, Physical & Engineering Sciences, 2015,471:20150159.
[28] RAHIMI B,STRUCHTRUP H. Capturing non-equilibrium phenomena in rarefied polyatomic gases:a high-order macroscopic model[J]. Physics of Fluids, 2014,26:052001.
[29] CAI Z N,FAN Y W,LI R. Globally hyperbolic regularization of Grad's moment system[J]. Communications on Pure and Applied Mathematics, 2014,67(3):464-518.
[30] TANG G H,ZHAI G X,TAO W Q,et al. Extended thermodynamic approach for non-equilibrium gas flow[J]. Communications in Computational Physics, 2013, 13(5):1330-1356.
[31] STRUCHTRUP H, TORRIHON M. Regularized 13 moment equations for hard sphere molecules:Linear bulk equations[J]. Physics of Fluids, 2013,25:052001.
[32] 吴望一.流体力学[M].北京:北京大学出版社,1982:52-56.
[33] FUKUI S,KANEKO R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation:first report-derivation of a generalized lubrication equation including thermal creep flow[J]. Journal of Tribology, Transactions of the ASME, 1988,110(2):253-262.
[34] BHATNAGAR P L,GROSS E P,KROOK M. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3):511-525.
[35] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. New York:Oxford University Press, 1994:208-216.

[1] 阮胤, 邱展, 王福新. 周期激励下NACA 0012翼型单自由度失速颤振研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1870-1880.