Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (8): 1500-1508    DOI: 10.3785/j.issn.1008-973X.2017.08.004
土木与交通工程     
纤维加筋淤泥固化土的邓肯-张模型
胡亚元1,2, 余启致1, 张超杰3,4, 钱镜林3,4, 谢嘉祺1
1. 浙江大学 滨海和城市岩土工程研究中心, 浙江 杭州 310058;
2. 广东省中科化灌工程与材料院士工作站, 广东 广州 510650;
3. 浙江省水利河口研究院, 浙江 杭州 310020;
4. 浙江省水利防灾减灾重点实验室, 浙江 杭州 310020
Duncan-Chang model for fiber reinforced solidified sludge
HU Ya-yuan1,2, YU Qi-zhi1, ZHANG Chao-jie3,4, QIAN Jing-lin3,4, XIE Jia-qi1
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China;
2. Guangdong Provincial Department of Chemical Engineering and Materials Irrigation Academician Workstation, Guangzhou 510650, China;
3. Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China;
4. Key Laboratory of Hydraulics Disaster Prevention and Mitigation of Zhejiang Province, Hangzhou 310020, China
 全文: PDF(1657 KB)   HTML
摘要:

为了改善水泥固化疏浚淤泥土的强度、变形和稳定性,促进在水利和岩土工程中的应用,将聚乙烯醇短纤维和水泥一起掺入淤泥中,对不同纤维掺入比和围压下的试样进行20组排水三轴试验,研究纤维对淤泥固化土工程性质和邓肯-张模型参数的影响.结果表明,掺入纤维后固化淤泥土的应力-应变关系呈现出双曲线变化特征;随着纤维掺入比增加,黏聚力显著增长,内摩擦角几乎保持不变.根据实测数据和回归分析方法,建立纤维淤泥固化土的邓肯-张E-B模型,获得初始切线模量及体积模量随纤维掺入比幂函数型增长的经验公式.邓肯-张E-B模型能够较好地拟合实测的应力-应变曲线.

Abstract:

Short polyvinyl alcohol fiber together with cement was mixed to sludge in order to improve strength, deformation and stability of cement-solidified dredged sludge and promote its application in hydraulic and geotechnical engineering. Twenty groups of samples with different fiber mixing ratio were conducted under different confining pressure in drained triaxial compression test in order to analyze the influence of fiber on the engineering properties and Duncan-Chang model parameters of solidified sludge. Results show that after fibers are mixed in, the stress-strain relationship of solidified sludge exhibits hyperbolic characteristic. The cohesion dramatically increases with fiber mixing ratio while the friction angle almost remains unchanged. Duncan-Chang E-B model was constructed for fiber reinforced solidified sludge based on experimental data and regression analysis method. The empirical formulas of initial tangent modulus and bulk modulus were formulated to increase with fiber mixing ratio by means of power function type. Experimental stress-strain curves can be well fitted by Duncan-Chang E-B model which considers fiber mixing ratio.

收稿日期: 2016-08-01 出版日期: 2017-08-16
CLC:  TU447  
基金资助:

国家自然科学基金资助项目(51178419);广东省中科化灌工程与材料院士工作站科研基金资助项目(2016GZZ07).

作者简介: 胡亚元(1968-),男,副教授,从事环境土工和土体本构关系等研究.ORCID:0000-0002-5422-7679.E-mail:huyayuan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

胡亚元, 余启致, 张超杰, 钱镜林, 谢嘉祺. 纤维加筋淤泥固化土的邓肯-张模型[J]. 浙江大学学报(工学版), 2017, 51(8): 1500-1508.

HU Ya-yuan, YU Qi-zhi, ZHANG Chao-jie, QIAN Jing-lin, XIE Jia-qi. Duncan-Chang model for fiber reinforced solidified sludge. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(8): 1500-1508.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.08.004        http://www.zjujournals.com/eng/CN/Y2017/V51/I8/1500

[1] 朱伟,张春雷,高玉峰,等.海洋疏浚泥固化处理土基本力学性质研究[J].浙江大学学报:工学版,2005,39(10):1561-1565. ZHU Wei, ZHANG Chun-lei, GAO Yu-feng, et al. Fundamental mechanical properties of solidified dredged marine sediment[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(10):1561-1565.
[2] TANG Yi-xin, MIYAZAKI Y, TSUCHIDA T. Practices of reused dredgings by cement treatment[J]. Soils and Foundations, 2001, 41(5):129-143.
[3] 孟庆山,杨超,雷学文,等.武汉东湖淤泥早强固化试验研究[J].岩土力学,2010,31(3):707-712. MENG Qing-shan, YANG Chao, LEI Xue-wen, et al. Experimental study of early solidification of sludge in East Lake, Wuhan[J]. Rock and Soil Mechanics, 2010, 31(3):707-712.
[4] AZADEGAN O, JAFARI S H, LI J. Compaction characteristics and mechanical properties of lime/cement treated granular soils[J]. Electronic Journal of Geotechnical Engineering, 2012, 17:2275-2284.
[5] 陈萍,高炎旭,马美玲.疏浚淤泥与焚烧底灰混合固化方法的试验研究[J].水利学报,2015, 46(6):749-756. CHEN Ping, GAO Yan-xu, MA Mei-ling. Experimental study on solidification method for dredged mud mixed with MSWI[J]. Journal of Hydraulic Engineering, 2015, 46(6):749-756.
[6] BAHAR R, BENAZZOUG M, KENAI S. Performance of compacted cement-stabilised soil[J]. Cement and concrete composites, 2004, 26(7):811-820.
[7] 张俊峰,戴小松,邹维列,等.水泥改性固化脱水淤泥路用性能试验[J].浙江大学学报:工学版,2015,49(11):2165-2171. ZHANG Jun-feng, DAI Xiao-song, ZOU Wei-lie, et al. Experiments on pavement performance of solidified sediment modified with cement[J]. Journal of Zhejiang University:Engineering Science, 2015, 49(11):2165-2171.
[8] TANG C, SHI B, GAO W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextilesand Geomembranes, 2007, 25(3):194-202.
[9] ESTABRAGH A R, NAMDAR P, JAVADI A A. Behavior of cement-stabilized clay reinforced with nylon fiber[J]. Geosynthetics International, 2012, 19(1):85-92.
[10] 蔡奕,施斌,高玮,等.纤维石灰土工程性质的试验研究[J].岩土工程学报,2006,28(10):1283-1287. CAI Yi, SHI Bin, GAO Wei, et al. Experimental study on engineering properties of fibre-lime treated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10):1283-1287.
[11] 高术森.聚丙烯纤维对固化海涂淤泥物理力学性能的影响研究[D].杭州:浙江大学,2012. GAO Shu-sen. Research on the effect of polypropylene fiber on mechanical properties of solidified tideland sludge[D]. Hangzhou:Zhejiang University, 2012.
[12] CARRUTH W D, HOWARD I L. Use of portland cement and polymer fibers to stabilize very high moisture content fine-grained soils[J]. Advances in Civil Engineering Materials, 2013, 2(1):1-24.
[13] KHATTAK M J, ALRASHIDI M. Durability and mechanistic characteristics of fiber reinforced soil-cement mixtures[J]. The International Journal of Pavement Engineering, 2006, 7(1):53-62.
[14] HUANG B, BATHURST R J, HATAMI K. Numerical study of reinforced soil segmental walls using three different constitutive soil models[J]. Journal of Geotechnical and Geoenvironmental engineering, 2009, 135(10):1486-1498.
[15] DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96(5):1629-1653.
[16] DUNCAN J M, WONGKS, MABRYP. Strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses//Geotechnical engineering[M]. California:University of California, Berkeley, 1980:75.
[17] XIONG J H, KOU X Y, LIU F, et al. Applicability of Duncan-Chang model and its modified versions to methane hydrate-bearing sands[C]//Advanced Materials Research. Switzerland:Trans Tech Publications, 2012, 347:3384-3387.
[18] MIYAZAKI K, TENMA N, AOKI K, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5(10):4057-4075.
[19] PARK S S. Unconfined compressive strength and ductility of fiber-reinforced cemented sand[J]. Construction and building materials, 2011, 25(2):1134-1138.
[20] 施利国,张孟喜,曹鹏.聚丙烯纤维加筋灰土的三轴强度特性[J].岩土力学,2011,32(9):2721-2728. SHI Li-guo, ZHANG Meng-xi, CAO Peng. Triaxial shear strength characteristics of lime-soil reinforced with polypropylene fiber inclusions[J]. Rock and Soil Mechanics, 2011, 32(9):2721-2728.
[21] JGJ/T 233-2011.水泥土配合比设计规程[S].北京:中国建筑工业出版社, 2011. JGJ/T 233-2011. Specification for mix proportion design of cement soi l[S]. Beijing:China Architecture & Building Press, 2011.
[22] GB/T50123-1999. 土工试验方法标准[S]. 北京:中国计划出版社, 1999. GB/T50123-1999. Standard for soil test method[S]. Beijing:China Planning Press, 1999.

[1] 王东星, 王宏伟, 肖杰. 活性MgO固化淤泥水稳特性试验研究[J]. 浙江大学学报(工学版), 2018, 52(4): 719-726.
[2] 康志军, 黄润秋, 卫彬, 谭勇. 上海软土地区某逆作法地铁深基坑变形[J]. 浙江大学学报(工学版), 2017, 51(8): 1527-1536.