Please wait a minute...
浙江大学学报(工学版)
电气工程     
计及轴承传热的高密度永磁电机温升计算
张晗妮1, 张琪1, 黄苏融1, 张舟云1,2
1. 上海大学 机电工程与自动化学院,上海200072; 2. 上海电驱动股份有限公司,上海200240
Temperature calculation for high power density permanent magnet motor with consideration of heat transfer in bearings
ZHANG Han ni1, ZHANG Qi1, HUANG Su rong1, ZHANG Zhou yun1,2
1. School of Electromechanics and Automation,Shanghai University, Shanghai 200072, China;2. Shanghai Electrodrive Limited Liability Company, Shanghai 200240, China
 全文: PDF(1122 KB)   HTML
摘要:

以电机系统常用的油浴润滑单列深沟球轴承为例,对轴承的传热情况进行研究.基于传热学和流体力学理论,提出一种轴承的热网络模型及相应参数的计算方法.研究当轴承滚动时其内部不同区域润滑液复杂的运动状态及不同流体的热参数计算方法.分析轴承承载后滚珠、滚道之间的接触变形以及接触处的传热.在考虑轴承摩擦损耗的基础上建立能够较好模拟轴承实际热传导过程的热网络模型.将轴承热网络模型与电机系统热网络模型进行结合,对一台高密度永磁电机进行温升计算.结果表明:轴承是永磁电机转子部件散热的重要路径,且电机转速越高,轴承对电机转子部分的温度影响越大,所提出的模型可以提高转子部件热性能评估的准确性.样机的温升计算数据与实验值基本吻合,验证了所提出的轴承热网络模型和参数计算方法的有效性和可行性.

Abstract:

Hear transfer in bearing was explored by taking oil bathed deep groove ball bearings as example which was widely used in electric motor system. A thermal network model and the calculation method for the corresponding parameters were proposed based on the heat transfer theory and the hydromechanics theory. The complex flow of the lubricant fluid in loaded bearings and the thermal parameter calculation method for different fluids were studied. The contact deformation between the balls and the raceway and the heat transfer between the contact zones in loaded bearings were also studied. Considering the frictional loss of bearing, the thermal network model was built, which could well simulate the real heat transfer in bearings. Combine this model with the thermal network model of electrical motor to calculate the temperature rise of a high power density permanent magnet motor. The calculation results show that the higher the motor speed is, the greater the influence of the bearings is on the temperature of the motor rotor. Therefore, bearings are the crucial paths for the rotor heat transfer. The proposed model can improve the thermal performance assessment precision of the rotor components. The good agreement between the calculation data and the test data verifies the effectiveness and the feasibility of the thermal network model for bearings and the calculation method for the parameters.

出版日期: 2015-12-31
:  TM 351  
基金资助:

国家“863”高技术研究发展计划资助项目(2012AA110802).

通讯作者: 张琪,女,教授,博导. ORCID: 0000 0003 0090 853X.     E-mail: qizhang@staff.shu.edu.cn
作者简介: 张晗妮(1989—),女,硕士生,从事永磁电机温度场仿真技术研究. ORCID: 0000 0001 5826 4840. E-mail: smile.hn@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张晗妮, 张琪, 黄苏融, 张舟云. 计及轴承传热的高密度永磁电机温升计算[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.12.022.

ZHANG Han ni, ZHANG Qi, HUANG Su rong, ZHANG Zhou yun. Temperature calculation for high power density permanent magnet motor with consideration of heat transfer in bearings. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.12.022.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.12.022        http://www.zjujournals.com/eng/CN/Y2015/V49/I12/2410

[1] EI REFAIE A M, ALEXANDER J P, GALIOTO S, et al. Advanced high power density interior permanent magnet motor for traction applications [J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3235-3248.
[2] DEACONU A S, CHIRIL A I, NVRPESCU V. Thermal analysis of a PMSM for an intermittent periodic duty cycle [C] ∥ Advanced Topics in Electrical Engineering (ATEE), 2013 8th International Symposium on IEEE. Bucharest: IEEE, 2013: 1-4.
[3] FINLEY W R. Advantages of optimizing motor and drives to ensure best performance and total cost of ownership [C] ∥ Cement Industry Technical Conference (CIC). Shenzhen: IEEE, 2014: 1-14.
[4] KEFALAS T D, KLADAS A G. Thermal investigation of permanent magnet synchronous motor for aerospace applications [J]. IEEE Transactions on Industry Electronics, 2014, 14(4): 4404-4411.
[5] HUANG X Z LIU J X, ZHANG C M. Calculation and experimental study on temperature rise of a high overload tubular permanent magnet linear motor [J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1182-1187.
[6] MARTINOVI M, DAMIR , STIPETI S, et al. Influence of winding design on thermal dynamics of permanent magnet traction motor [C] ∥ 22nd International Symposium on Power Electronics, Electrical Drives, Automation and Motion SPEEDAM. 2014: 397-402.
[7] GILSON G M, RAMINOSOA T, PICKERING S J. A combined electromagnetic and thermal optimisation of an aerospace electric motor [C] ∥ 2010 XIX International Conference on Electrical Machines (ICEM). Rome: IEEE, 2010: 1-7.
[8] FUNIERU B, BINDER A. Thermal design of a permanent magnet motor used for gearless railway traction [C] ∥ Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE. Florida: IEEE, 2008:2061-2066.
[9] NILSAKORN T, WORANETSUTTIKUL K, PINSUNTIA K. Harmonic effect on BLDC motor temperature caused by driving system [C] ∥ 2014 International Electrical Engineering Congress (iEECON). Chonburi: IEEE, 2014: 1-4.
[10] LI Y, LIU J, XIA J, et al. Analysis of electromagnetic and thermal characteristics of the PM generator with rectifier load [C] ∥ Transportation Electrification Asia Pacific (ITEC Asia Pacific), 2014 IEEE Conference and Expo. Beijing: IEEE, 2014: 1-4.
[11] TUYSUZ A, SCHAUBHUT A, ZWYSSIG C. Model based loss minimization in high speed motors [C] ∥ Electric Machines and Drives Conference (IEMDC), 2013 IEEE International. Chicago: IEEE, 2013: 332-339.
[12] ILHAN E, KREMERS M F J, MOTOASCA T E. Transient thermal analysis of flux switching PM machines [C] ∥ Ecological Vehicles and Renewable Energies (EVER), 2013 8th International Conference and Exhibition on IEEE, Monte Carlo: IEEE, 2013: 1-7.
[13] BRACIKOWSKI N, HECQUET M, BROCHET P. Multiphysics modeling of a permanent magnet synchronous machine by using lumped models [J]. IEEE Transactions on Industry Electronics, 2012, 59(6): 2426-2436.
[14] HRUSKA K, KINDL V, PECHANEK R. Evaluation of different approaches of mathematical modelling of thermal phenomena applied to induction motors [C] ∥ 2014 ELEKTRO Annual Conference of IEEE. Moscow: IEEE, 2014: 358-362.
[15] BOSENIUK F, PONICK B. Parameterization of transient thermal models for permanent magnet synchronous machines exclusively based on measurements [C] ∥ 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Ischia: IEEE, 2014: 295-301.
[16] HUANG X Z, LI L Y, ZHOU B. Temperature calculation for tubular linear motor by the combination of thermal circuit and temperature field method considering the linear motion of air gap [J]. IEEE Transactions on Industrial Electronics, 2013, 61(8): 3923-3931.
[17] YAMAZAKI K, KATO Y. Reduction of rotor losses in multi layer interior permanent magnet synchronous motors by introducing novel topology of rotor flux barriers [J]. IEEE Transactions on Industry Applications, 2013: 1-10.
[18] KIM K S, LEE B H, HONG J P. Improvement of thermal equivalent circuit network and prediction on heat characteristic of motor by calculation of convection heat transfer coefficient [C] ∥ Electromagnetic Field Problems and Applications (ICEF), 2012 6th International Conference on IEEE. Dalian: IEEE, 2012: 1-4.
[19] 师蔚. 高密度永磁电机永磁体防退磁技术的研究[D].上海:上海大学, 2013.
SHI Wei. The research of anti demagnetization technology of permanent magnet in high density permanent magnet motor [D]. Shanghai: Shanghai University,2013.
[20] WROBEL R, VAINEL G, COPELAND C. Investigation of mechanical loss and heat transfer in an axial flux PM machine [C] ∥ 2013 IEEE, Energy Conversion Congress and Exposition (ECCE), Denver: IEEE, 2013: 4372-4379.
[21] 黄东洋,洪军,张进华.热阻网络法在轴系温度场求解中的应用[J].西安交通大学学报, 2012 (5): 63-66.
HUANG Dong yang, HONG Jun, ZHANG Jin hua. Thermal resistance network for solving temperature field in spindle system [J]. Journal of Xi’an Jiaotong University. 2012 (5): 6366.
[22] 涂亦虓, 马希直. 高速向心推力球轴承温度场分析[J]. 机械制造与自动化, 2012(6): 43-55.
TU Yi xiao, MA Xi zhi. Analysis of temperature fields of high speed centripetal thrust ball bearing[J]. Machine Building and Automation, 2012(6): 43-55.
[23] 薛志嵩, 胡小秋, 赵雁. 考虑结合面接触热阻的角接触球轴承温度场分析[J]. 轴承, 2013(5): 34-37.
XUE Zhi song, HU Xiao qiu, ZHAO Yan. Analysis on thermal field for angular contact ball bearings considering thermal contact resistance of coupling surfaces [J]. Bearing, 2013(5): 34-37.
[24] ATATON D, BOGLIETTI A, CAVAGNINO A. Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors. [J] IEEE Transactions on Energy Conversion, 2005, 20(3): 620-628.
[25] CHILDS P R N. Rotating flow [M] London: Butterworth Heinemann, 2011.
[26] HOWEY D A, CHILDS P R N, HOLMES A S. Air gap convection in rotating electrical machines [J]. IEEE Industrial Electronics Society, 2010, 59(3):1367-1375.
[27] HIRPSHI I, MIYAGI K. Laminar flow in rotating curved pipes [J]. Journal of Fluid Mechanics, 1996, 329: 373-388.
[28] INCROPERA F P, DEEITT D P. Fundamentals of Heat and Mass Transfer [M]. New York: Wiley,2012.
[29] HARRIS T A, KOTZALAS, M N. 轴承技术的基本概念[M] ∥ 滚动轴承分析,第1卷.罗继伟,马伟,译.5版.北京:机械工业出版社, 2009.
[30] 王爱元,黄苏融,汞俊.应用集中参数热模型的高密度IPM电机运行过程的热仿真[J].微特电机, 2004 (8): 5-8.
WANG Ai yuan,HUANG Su rong,GONG Jun. Thermal simulation of high density IPM motor operating process using lumped parameter thermal model [J]. Small and Special Machines. 2004(8): 5-8.

[1] 宁银行, 刘闯, 干兴业. 两级式无刷混合励磁同步电机的电磁设计及分析[J]. 浙江大学学报(工学版), 2016, 50(3): 519-526.
[2] 陈亮亮,祝长生,蒋科坚. 含极间填充块的高速表贴式永磁同步电机转子强度分析[J]. 浙江大学学报(工学版), 2015, 49(9): 1738-1748.
[3] 左曙光,张国辉,吴旭东,高丽华,沈健. 倾斜偏心下轮毂永磁同步电机电磁力分析[J]. 浙江大学学报(工学版), 2015, 49(5): 901-907.
[4] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2015, 49(1): 173-180.
[5] 陈亮亮,祝长生,王萌. 碳纤维护套高速永磁电机热态转子强度[J]. 浙江大学学报(工学版), 2015, 49(1): 162-172.
[6] 左曙光,张国辉,吴旭东,高丽华,沈健. 倾斜偏心下轮毂永磁同步电机电磁力分析[J]. 浙江大学学报(工学版), 2014, 48(12): 1-7.
[7] 韩汇文,祝长生. 表贴式永磁电机电枢反应磁场的子域模型[J]. 浙江大学学报(工学版), 2014, 48(9): 1682-1689.
[8] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2014, 48(8): 1-8.
[9] 薛劭申, 许海平, 方程, 牛威昆, 薛 山. 基于载波的多相永磁同步电机谐波平面控制[J]. J4, 2013, 47(12): 2080-2086.
[10] 王保俊, 毕刘新, 陈亮亮, 杨平西, 祝长生. 碳纤维绑扎表贴式高速永磁电机转子强度分析[J]. J4, 2013, 47(12): 2101-2110.
[11] 蔡炯炯, 卢琴芬, 刘晓, 叶云岳. PMLSM推力波动抑制分段斜极方法研究[J]. J4, 2012, 46(6): 1122-1127.
[12] 孙晓东,陈龙,杨泽斌,朱熀秋,嵇小辅. 贝叶斯证据框架下LS-SVM的BPMSM磁链建模[J]. J4, 2012, 46(5): 873-877.
[13] 张玉秋, 刘晓, 叶云岳, 金勇. 双边空心式永磁直线伺服电机的横向边缘效应[J]. J4, 2011, 45(10): 1836-1841.
[14] 吴克元,刘晓,叶云岳. 平板型混合式直线步进电机的关键参数[J]. J4, 2011, 45(9): 1603-1608.
[15] 张凤阁,陈进华,刘光伟,李晋. 定子紧固件对异向旋转双转子永磁电机的影响[J]. J4, 2011, 45(5): 804-808.