Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (1): 1-10    DOI: 10.3785/j.issn.1008-9209.2020.03.231
综述     
哺乳动物核心岩藻糖基化研究进展
田银平(),易文()
浙江大学生命科学学院生物化学研究所,杭州 310058
Advances in the study of core fucosylation in mammals
Yinping TIAN(),Wen YI()
Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1502 KB)   HTML
摘要:

糖基化是一种常见的翻译后修饰,能够参与重要生理功能的调控。其中,核心岩藻糖基化是只发生在N-聚糖上的α1,6岩藻糖修饰。目前研究发现,只有一种糖基转移酶——岩藻糖基转移酶8(fucosyltransferase 8, FUT8)能催化核心岩藻糖基化。本文重点介绍哺乳动物细胞内的核心岩藻糖基化修饰及其相关的生物学功能。核心岩藻糖基转移酶8以鸟苷二磷酸岩藻糖为糖供体来催化核心岩藻糖形成。人源FUT8蛋白结晶对该酶的催化机制及其底物特异性进行了合理解释。现有研究发现,核心岩藻糖基化在肿瘤进程、免疫调控和干细胞分化中发挥着重要作用。而岩藻糖类似物既可以是代谢标志物,也可以是岩藻糖基化抑制剂。核心岩藻糖基化N-聚糖的特异性标记和全自动合成将对其功能的深入研究和临床应用具有重要意义。

关键词: 岩藻糖糖基转移酶核心岩藻糖基化肿瘤免疫干细胞岩藻糖类似物    
Abstract:

Glycosylation is a major posttranslational modification, which involves in the regulation of important physiological functions. Among them, core fucosylation is an α1, 6-linked fucose to N-glycans, which catalyzes by only one glycosyltransferase. This review will focus on core fucosylation in mammals and the related biological functions. Fucosyltransferase 8 (FUT8) is the sole enzyme responsible for this modification via the addition of L-fucose residue from guanosine diphosphate-β-L-fucose. The crystal structure of human FUT8 provided insight into both catalytic mechanism and substrate recognition. Currently, core fucosylation plays an important role in tumor progression, immune regulation and stem cell differentiation. Moreover, fucose analogues were either the metabolic substitutes or inhibitors of fucosylation. In conclusion, the specific labeling and automatic synthesis of core-fucosylated N-glycans will play an important role in its further study and clinical application.

Key words: fucose    glycosyltransferase    core fucosylation    tumor    immune    stem cell    fucose analogue
收稿日期: 2020-03-23 出版日期: 2021-03-09
CLC:  Q  
基金资助: 国家自然科学基金(91753125)
通讯作者: 易文     E-mail: serven0418@163.com;wyi@zju.edu.cn
作者简介: 田银平(https://orcid.org/0000-0002-6998-0612),E-mail:serven0418@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田银平
易文

引用本文:

田银平,易文. 哺乳动物核心岩藻糖基化研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 1-10.

Yinping TIAN,Wen YI. Advances in the study of core fucosylation in mammals. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 1-10.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.03.231        http://www.zjujournals.com/agr/CN/Y2021/V47/I1/1

图1  哺乳动物细胞中的糖基化修饰Asn:天冬酰胺;Ser/Thr:丝氨酸/苏氨酸。
图2  哺乳动物细胞内GDP岩藻糖的生物合成途径
图3  人细胞内代表性N-聚糖A.人细胞内4种代表性N-聚糖;B.岩藻糖基转移酶8催化核心岩藻糖基化。Asn:天冬酰胺。
图4  岩藻糖类似物
1 PINHO S S, REIS C A. Glycosylation in cancer: mechanisms and clinical implications. Nature Reviews Cancer, 2015,15(9):540-555. DOI:10.1038/nrc3982
doi: 10.1038/nrc3982
2 BOND M R, HANOVER J A. A little sugar goes a long way: the cell biology of O-GlcNAc. Journal of Cell Biology, 2015,208(7):869-880. DOI:10.1083/jcb.201501101
doi: 10.1083/jcb.201501101
3 TONETTI M, STURLA L, BISSO A, et al. The metabolism of 6-deoxyhexoses in bacterial and animal cells. Biochimie, 1998,80(11):923-931. DOI:10.1016/S0300-9084(00)88889-6
doi: 10.1016/S0300-9084(00)88889-6
4 ISHIHARA H, HEATH E C. The metabolism of L-fucose. Ⅳ. The biosynthesis of guanosine diphosphate L-fucose in porcine liver. Journal of Biological Chemistry, 1968,243(6):1110-1115.
5 PASTUSZAK I, KETCHUM C, HERMANSON G, et al. pyrophosphorylase GDP-L-fucose. Purification, cloning cDNA, and properties of the enzyme. Journal of Biological Chemistry, 1998,273(46):30165-30174.
6 PUGLIELLI L, HIRSCHBERG C B. Reconstitution, identification, and purification of the rat liver golgi membrane GDP-fucose transporter. Journal of Biological Chemistry, 1999,274(50):35596-35600. DOI:10.1074/jbc.274.50.35596
doi: 10.1074/jbc.274.50.35596
7 YURCHENCO P D, ATKINSON P H. Equilibration of fucosyl glycoprotein pools in HeLa cells. Biochemistry, 1977,16(5):944-953.
8 MARQUARDT T, LUHN K, SRIKRISHNA G, et al. Correction of leukocyte adhesion deficiency type Ⅱ with oral fucose. Blood, 1999,94(12):3976-3985. DOI:10.1006/bcmd.1999.0267
doi: 10.1006/bcmd.1999.0267
9 MIYOSHI E, TANIGUCHI N. α6-fucosyltransferase (FUT8)//Handbook of Glycosyltransferases and Related Genes. Tokyo: Springer, 2002:259-263. DOI:10.1007/978-4-431-67877-9_34
doi: 10.1007/978-4-431-67877-9_34
10 CALDERON A D, LIU Y P, LI X, et al. Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans. Organic & Biomolecular Chemistry, 2016,14(17):4027-4031. DOI:10.1039/c6ob00586a
doi: 10.1039/c6ob00586a
11 CRISPIN M, HARVEY D J, CHANG V T, et al. Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase Ⅰ-independent fucosylation pathway. Glycobiology, 2006,16(8):748-756. DOI:10.1093/glycob/cwj119
doi: 10.1093/glycob/cwj119
12 LIN A I, PHILIPSBERG G A, HALTIWANGER R S. Core fucosylation of high-mannose-type oligosaccharides in GlcNAc transferase Ⅰ-deficient (Lec1) CHO cells. Glyco-biology, 1994,4(6):895-901. DOI:10.1093/glycob/4.6.895
doi: 10.1093/glycob/4.6.895
13 YANG Q, ZHANG R S, CAI H, et al. Revisiting the substrate specificity of mammalian alpha 1, 6-fucosyl-transferase reveals that it catalyzes core fucosylation of N-glycans lacking alpha 1, 3-arm GlcNAc. Journal of Biological Chemistry, 2017,292(36):14796-14803. DOI:10.1074/jbc.M117.804070
doi: 10.1074/jbc.M117.804070
14 TSENG T H, LIN T W, CHEN C Y, et al. Substrate preference and interplay of fucosyltransferase 8 and N-acetylglucosaminyltransferases. Journal of the American Chemistry Society, 2017,139(28):9431-9434. DOI:10.1021/jacs.7b03729
doi: 10.1021/jacs.7b03729
15 IHARA H, IKEDA Y, TOMA S, et al. Crystal structure of mammalian alpha1, 6-fucosyltransferase, FUT8. Glycobiology, 2007,17(5):455-466. DOI:10.1093/glycob/cwl079
doi: 10.1093/glycob/cwl079
16 GARCIA-GARCIA A, CEBALLOS-LAITA L, SERNA S, et al. Structural basis for substrate specificity and catalysis of alpha1, 6-fucosyltransferase. Nature Communication, 2020,11(1):973-981. DOI:10.1038/s41467-020-14794-z
doi: 10.1038/s41467-020-14794-z
17 KEELEY T S, YANG S Y, LAU E. The diverse contributions of fucose linkages in cancer. Cancers, 2019,11(9):1241-1265. DOI:10.3390/cancers11091241
doi: 10.3390/cancers11091241
18 季君,高春芳.α-1,6岩藻糖基转移酶与肿瘤.第二军医大学学报,2011,32(2):209-212. DOI:10.3724/SP.J.1008.2011.00209
JI J, GAO C F. α1, 6-fucosyltransferase and tumor: recent progress. Academic Journal of Second Military Medical University, 2011,32(2):209-212. (in Chinese with English abstract)
doi: 10.3724/SP.J.1008.2011.00209
19 SCHNEIDER M, AL-SHAREFFI E, HALTIWANGER R S, et al. Biological functions of fucose in mammals. Glycobiology, 2017,27(7):601-618. DOI:10.1093/glycob/cwx034
doi: 10.1093/glycob/cwx034
20 MEHTA A, HERRERA H, BLOCK T M, et al. Glycosylation and liver cancer. Advances in Cancer Research, 2015,126:257-279. DOI:10.1016/bs.acr.2014.11.005
doi: 10.1016/bs.acr.2014.11.005
21 SATO Y, NAKATA K, KATO Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. The New England Journal of Medicine, 1993,328(25):1802-1806.
22 CHENG H T, CHANG Y H, CHEN Y Y, et al. AFP-L3 in chronic liver diseases with persistent elevation of alpha-fetoprotein. Journal of the Chinese Medical Association, 2007,70(8):310-317. DOI:10.1016/s1726-4901(08)70011-x
doi: 10.1016/s1726-4901(08)70011-x
23 NORTON P A, MEHTA A S. Expression of genes that control core fucosylation in hepatocellular carcinoma: systematic review. World Journal of Gastroenterology, 2019,25(23):2947-2960. DOI:10.3748/wjg.v25.i23.2947
doi: 10.3748/wjg.v25.i23.2947
24 SCOTT E, MUNKLEY J. Glycans as biomarkers in prostate cancer. International Journal of Molecular Sciences, 2019,20(6):1389-1408. DOI:10.3390/ijms20061389
doi: 10.3390/ijms20061389
25 KYSELOVA Z, MECHREF Y, AL-BATAINEH M M, et al. Alterations in the serum glycome due to metastatic prostate cancer. Journal of Proteome Research, 2007,6(5):1822-1832. DOI:10.1021/pr060664t
doi: 10.1021/pr060664t
26 MIYOSHI E, NAKANO M. Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics, 2008,8(16):3257-3262. DOI:10.1002/pmic.200800046
doi: 10.1002/pmic.200800046
27 AGRAWAL P, FONTANALS-CIRERA B, SOKOLOVA E, et al. A systems biology approach identifies FUT8 as a driver of melanoma metastasis. Cancer Cell, 2017,31(6):804-819. DOI:10.1016/j.ccell.2017.05.007
doi: 10.1016/j.ccell.2017.05.007
28 ZHAO Y Y, SATO Y, ISAJI T, et al. Branched N-glycans regulate the biological functions of integrins and cadherins. The FEBS Journal, 2008,275(9):1939-1948. DOI:10.1111/j.1742-4658.2008.06346.x
doi: 10.1111/j
29 ZHAO Y Y, ITOH S, WANG X C, et al. Deletion of core fucosylation on α3β1 integrin down-regulates its functions. Journal of Biological Chemistry, 2006,281(50):38343-38350. DOI:10.1074/jbc.M608764200
doi: 10.1074/jbc.M608764200
30 CHEN C Y, JAN Y H, JUAN Y H, et al. Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. PNAS, 2013,110(2):630-635. DOI:10.1073/pnas.1220425110
doi: 10.1073/pnas.1220425110
31 OSUMI D, TAKAHASHI M, MIYOSHI E, et al. Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer Science, 2009,100(5):888-995. DOI:10.1111/j.1349-7006.2009.01125.x
doi: 10.1111/j.1349-7006.2009.01125.x
32 SONNEVELD M E, SCHOOT C E VAN DER, VIDARSSON G. The elements steering pathogenesis in IgG-mediated alloimmune diseases. Journal of Clinical Immunology, 2016,36():76-81. DOI:10.1007/s10875-016-0253-x
doi: 10.1007/s10875-016-0253-x
33 SHIELDS R L, LAI J, KECK R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRⅢ and antibody-dependent cellular toxicity. Journal of Biological Chemistry, 2002,277(30):26733-26740. DOI:10.1074/jbc.M202069200
doi: 10.1074/jbc.M202069200
34 FERRARA C, GRAU S, JAGER C, et al. Unique carbo-hydrate-carbohydrate interactions are required for high affinity binding between FcγRⅢ and antibodies lacking core fucose. PNAS, 2011,108(31):12669-12674. DOI:10.1073/pnas.1108455108
doi: 10.1073/pnas.1108455108
35 PEREIRA N A, CHAN K F, LIN P C, et al. The “less-is-more” in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. mAbs, 2018,10(5):693-711. DOI:10.1080/19420862.2018.1466767
doi: 10.1080/19420
36 BECK A, REICHERT J M. Marketing approval of mogamulizumab: a triumph for glyco-engineering. mAbs, 2012,4(4):419-425. DOI:10.4161/mabs.20996
doi: 10.4161/mabs.20996
37 ILLIDGE T, KLEIN C, SEHN L H, et al. Obinutuzumab in hematologic malignancies: lessons learned to date. Cancer Treatment Reviews, 2015,41(9):784-792. DOI:10.1016/j.ctrv.2015.07.003
doi: 10.1016/j.ctrv.2015.07.003
38 ASTER R H. Core fucosylation and IgG function in NAIT. Blood, 2014,123(4):463-464. DOI:10.1182/blood-2013-12-539965
doi: 10.1182/blood-2013-12-539965
39 KAPUR R, KUSTIAWAN I, VESTRHEIM A, et al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood, 2014,123(4):471-480. DOI:10.1182/blood-2013-09-527978
doi: 10.1182/blood-2013-09-527978
40 WANG T T, SEWATANON J, MEMOLI M J, et al. IgG antibodies to dengue enhanced for Fc gamma RⅢA binding determine disease severity. Science, 2017,355(6323):395-399. DOI:10.1126/science.aai8128
doi: 10.1126/science.aai8128
41 WANG X C, GU J G, IHARA H, et al. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. Journal of Biological Chemistry, 2006,281(5):2572-2577. DOI:10.1074/jbc.M510893200
doi: 10.1074/jbc.M510893200
42 WANG X C, GU J G, MIYOSHI E, et al. Phenotype changes of Fut8 knockout mouse: Core fucosylation is crucial for the function of growth factor receptor(s). Functional Glycomics, 2006,417:11-22. DOI:10.1016/S0076-6879(06)17002-0
doi: 10.1016/S0076-6879(06)17002-0
43 WANG X C, INOUE S, GU J G, et al. Dysregulation of TGF-β1 receptor activation leads to abnormal lung develop-ment and emphysema-like phenotype in core fucose-deficient mice. PNAS, 2005,102(44):15791-15796. DOI:10.1073/pnas.0507375102
doi: 10.1073/pnas.0507375102
44 LI L K, SHEN N, WANG N, et al. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney International, 2018,93(6):1384-1396. DOI:10.1016/j.kint.2017.12.023
doi: 10
45 TAYLOR P R, BROWN G D, REID D M, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. The Journal of Immunology, 2002,169(7):3876-3882. DOI:10.4049/jimmunol.169.7.3876
doi: 10.4049/jimmunol.169.7.3876
46 MANABE Y, MARCHETTI R, TAKAKURA Y, et al. The core fucose on an IgG antibody is an endogenous ligand of dectin-1. Angewandte Chemie (International Edition), 2019,58(51):18697-18702. DOI:10.1002/anie.201911875
doi: 10.1002/anie.201911875
47 KARACALI S. Human embryonic stem cell N-glycan features relevant to pluripotency. Turkish Journal of Biology, 2016,40(5):1050-1058. DOI:10.3906/biy-1509-57
doi: 10.3906/biy-1509-57
48 AN H J, GIP P, KIM J, et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Molecular & Cellular Proteomics, 2012,11(4):M111.010660. DOI:10.1074/mcp.M111.010660
doi: 10.1074/mcp.M111.010660
49 HASEHIRA K, TATENO H, ONUMA Y, et al. Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Molecular & Cellular Proteomics, 2012,11(12):1913-1923. DOI:10.1074/mcp.M112.020586
doi: 10.1074/mcp.M112.020586
50 SATOMAA T, HEISKANEN A, MIKKOLA M, et al. The N-glycome of human embryonic stem cells. BMC Cell Biology, 2009,10(42):1-18. DOI:10.1186/1471-2121-10-42
doi: 10.1186/1471-2121-10-42
51 TATENO H, TOYOTA M, SAITO S, et al. Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. Journal of Biological Chemistry, 2011,286(23):20345-20353. DOI:10.1074/jbc.M111.231274
doi: 10.1074/jbc.M111.231274
52 SRIVASTAVA G, KAUR K J, HINDSGAUL O, et al. Enzymatic transfer of a preassembled trisaccharide antigen to cell surfaces using a fucosyltransferase. Journal of Bio-logical Chemistry, 1992,267(31):22356-22361. DOI:10.1016/S0022-5193(05)80771-4
doi: 10.1016/S0022-5193(05)80771-4
53 NING X H, GUO J, WOLFERT M A, et al. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angewandte Chemie (International Edition), 2008,47(12):2253-2255. DOI:10.1002/anie.200705456
doi: 10.1002/anie.200705456
54 LAUGHLIN S T, BERTOZZI C R. In vivo imaging of caenorhabditis elegans glycans. ACS Chemical Biology, 2009,4(12):1068-1072. DOI:10.1021/cb900254y
doi: 10.1021/cb900254y
55 LAUGHLIN S T, BASKIN J M, AMACHER S L, et al. In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 2008,320(5876):664-667. DOI:10.1126/science.1155106
doi: 10.1126/science.1155106
56 HSU T L, HANSON S R, KISHIKAWA K, et al. Alkynyl sugar analogs for the labeling and visualization of glycocon-jugates in cells. PNAS, 2007,104(8):2614-2619. DOI:10.1073/pnas.0611307104
doi: 10.1073/pnas.0611307104
57 SAWA M, HSU T L, ITOH T, et al. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. PNAS, 2006,103(33):12371-12376. DOI:10.1073/pnas.0605418103
doi: 10.1073/pnas.0605418103
58 YI W, LIU X W, LI Y H, et al. Remodeling bacterial polysaccharides by metabolic pathway engineering. PNAS, 2009,106(11):4207-4212. DOI:10.1073/pnas.0812432106
doi: 10.1073/pnas.0812432106
59 OKELEY N M, TOKI B E, ZHANG X Q, et al. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation. Bioconjugate Chemistry, 2013,24(10):1650-1655. DOI:10.1021/bc4002695
doi: 10.1021/bc4002695
60 KIZUKA Y, FUNAYAMA S, SHOGOMORI H, et al. High-sensitivity and low-toxicity fucose probe for glycan imaging and biomarker discovery. Cell Chemical Biology, 2016,23(7):782-792. DOI:10.1016/j.chembiol.2016.06.010
doi: 10.1016/j.chembiol.2016.06.010
61 KIZUKA Y, NAKANO M, YAMAGUCHI Y, et al. An alkynyl-fucose halts hepatoma cell migration and invasion by inhibiting GDP-fucose-synthesizing enzyme FX, TSTA3. Cell Chemical Biology, 2017,24(12):1467-1478. DOI:10.1016/j.chembiol.2017.08.023
doi: 10.1016/j.chembiol.2017.08.023
62 BURKART M D, VINCENT S P, DUFFELS A, et al. Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. Bioorganic & Medicinal Chemistry, 2000,8(8):1937-1946. DOI:10.1016/S0968-0896(00)00139-5
doi: 10.1016/S0968-0896(00)00139-5
63 OKELEY N M, ALLEY S C, ANDERSON M E, et al. Development of orally active inhibitors of protein and cellular fucosylation. PNAS, 2013,110(14):5404-5409. DOI:10.1073/pnas.1222263110
doi: 10.1073/pnas.1222263110
64 RILLAHAN C D, ANTONOPOULOS A, LEFORT C T, et al. Global metabolic inhibitors of sialyl- and fucosyl-transferases remodel the glycome. Nature Chemical Biology, 2012,8(7):661-668. DOI:10.1038/nchembio.999
doi: 10.1038/nchembio.999
65 ALLEN J G, MUJACIC M, FROHN M J, et al. Facile modulation of antibody fucosylation with small molecule fucostatin inhibitors and cocrystal structure with GDP-mannose 4, 6-dehydratase. ACS Chemical Biology, 2016,11(10):2734-2743. DOI:10.1021/acschembio.6b00460
doi: 10.1021/acschembio.6b00460
66 ZENG W F, LIU M Q, ZHANG Y, et al. pGlyco: a pipeline for the identification of intact N-glycopeptides by using HCD- and CID-MS/MS and MS3. Scientific Reports, 2016,6(1):25102. DOI:10.1038/srep25102
doi: 10.1038/srep25102
67 HWANG H, JEONG H K, LEE H K, et al. Machine learning classifies core and outer fucosylation of N-glycoproteins using mass spectrometry. Scientific Reports, 2020,10(1):318. DOI:10.1038/s41598-019-57274-1
doi: 10.1038/s41598-019-57274-1
68 CALDERON A D, LI L, WANG P G. FUT8: from biochemistry to synthesis of core-fucosylated N-glycans. Pure and Applied Chemistry, 2017,89(7):911-920. DOI:10.1515/pac-2016-0923
doi: 10.1515/pac-2016-0923
69 CALDERON A D, ZHOU J, GUAN W Y, et al. An enzymatic strategy to asymmetrically branched N-glycans. Organic & Biomolecular Chemistry, 2017,15(35):7258-7262. DOI:10.1039/C7OB01765K
doi: 10.1039/C7OB01765K
70 HAHM H S, SCHLEGEL M K, HUREVICH M, et al. Automated glycan assembly using the Glyconeer2.1 synthesizer. PNAS, 2017,114(17):E3385-E3389. DOI:10.1073/pnas.1700141114
doi: 10.1073/pnas.1700141114
71 ZHANG J B, CHEN C C, GADI M R, et al. Frontispiece: machine-driven enzymatic oligosaccharide synthesis by using a peptide synthesizer. Angewandte Chemie (International Edition), 2018,57(51):16638-16642. DOI:10.1002/anie.201885161
doi: 10.1002/anie.201885161
72 LI T H, LIU L, WEI N, et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nature Chemistry, 2019,11(3):229-236. DOI:10.1038/s41557-019-0219-8
doi: 10.1038/s41557-019-0219-8
[1] 袁新程,蒋飞,施永海,徐嘉波,刘永士,邓平平. 高温胁迫对美洲鲥1龄鱼种抗氧化与非特异性免疫相关指标的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 107-117.
[2] 赵航晔,夏琛,何普明,屠幼英. 茶多酚抗炎和促外伤愈合作用及其机制[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 118-126.
[3] 陈莲芙,任苧,陈益,屠幼英. 茶树花皂苷对卵巢癌干细胞样细胞增殖的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 667-676.
[4] 陈婧,何宏燕,刘昌胜. 微流芯片表面生物改性用于重组人骨形态发生蛋白-2的检测[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 391-399.
[5] 陈小连,宋文静,周泉勇,宋琼莉,邹志恒,刘林秀,胡利珍,韦启鹏,严景生,达列亚•阿合买提null. 广东紫珠提取物对母猪繁殖性能、免疫、抗氧化功能及肠道微生物的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 360-368.
[6] 管若溦,刘建新. 围生期奶牛易感疾病的原因及常见病患的早期监测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 519-525.
[7] 易治鑫,蒋易龙,王秋宏,徐麒麟,王新兴,莫桂林,姜冬梅,康波. 精胺对鹅免疫器官指数及免疫相关因子基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 596-602.
[8] 王志刚,徐超,李霞辉,林诗宇,杜夏夏,冉崇霖,舒刚. 辣木叶粉对鹌鹑生产性能、免疫功能及血清抗氧化指标的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 243-250.
[9] 孔德栋, 赵悦伶, 王岳飞, 徐平. 茶多酚对肿瘤免疫逃逸的抑制机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 539-548.
[10] 曹卓洋, 吕清华, 谢媛, 方萍, 汪荣才, 叶达丰. 基础日粮添加冬虫夏草菌丝体发酵液对獭兔免疫功能的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 638-642.
[11] 杨晖, 柯乐芹, 舒若男, 陈雨薇, 朱婷瑜, 王俊, 范锦涛, 汪亮亮. 不同贮藏时间对食用菌多糖含量及其抗氧化活性的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 356-364.
[12] 徐超, 杨晓炼, 乐敏, 朱书. 细菌促进肠道病毒感染及其机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 140-148.
[13] 覃盼,王经纬,王斌,雷喜梅,李龙,黄耀伟. 中国东部5省猪呼肠孤病毒流行病学调查与分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 631-638.
[14] 罗俊, 刘贺贺, 刘俊莹, 张涛, 王郁石, 韩春春. 鸭RIG-1启动子克隆、序列分析及在鸭胚胎期发育性表达[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 104-112.
[15] 陈思远, 胡济安. 盐霉素诱导的细胞自噬机制在抗癌治疗中的应用进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 694-702.