Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 547-556    DOI: 10.3785/j.issn.1008-973X.2024.03.012
土木工程、交通工程     
浅层膨胀土及其纤维改良土的剪切强度特性
段君义1(),吴俊江1,粟雨1,吕志涛1,*(),林宇亮2,杨果林2
1. 南昌大学 工程建设学院,江西 南昌 330031
2. 中南大学 土木工程学院,湖南 长沙 410075
Shear strength characteristics of shallow expansive soil and its fiber improved soil
Junyi DUAN1(),Junjiang WU1,Yu SU1,Zhitao LV1,*(),Yuliang LIN2,Guolin YANG2
1. School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
2. School of Civil Engineering, Central South University, Changsha 410075, China
 全文: PDF(2111 KB)   HTML
摘要:

与膨胀土工程灾害密切相关的浅层膨胀土受到的围压通常较低,其力学特性有别于高围压下的情形. 通过三轴剪切试验比较高、低围压下膨胀土的剪切行为及剪切强度的非线性特征,探讨聚丙烯纤维改良浅层膨胀土的剪切特性及加固机理. 结果表明,浅层膨胀土剪切强度具有明显的非线性,可用幂函数表征. 随着土体中水的质量分数增大和围压减小,膨胀土剪切强度非线性更加明显. 采用高围压下的抗剪强度参数试验结果会导致浅层饱和膨胀土的黏聚力被高估225.7%、内摩擦角被低估42.5%. 掺入纤维后膨胀土的剪切强度明显提高,提升幅度与土体中的三维纤维网状结构的形成度有关. 增大纤维长度可以有效降低剪切强度衰减率,继而消弱膨胀土的应变软化效应;过长的纤维在膨胀土内容易弯曲和扭折,会导致纤维-膨胀土界面作用随着土体变形而逐渐劣化.

关键词: 低围压膨胀土剪切强度纤维网状结构应变软化纤维-土体界面作用    
Abstract:

The shallow expansive soils, closely related to the engineering disaster of expansive soils, are usually subjected to low confining pressures, and their mechanical properties are different from those under high confining pressures. Triaxial shear tests were conducted to compare the shear behavior and nonlinear characteristics of the shear strength of expansive soil under high and low cell pressures. The shear properties and reinforcement mechanism of shallow expansive soil improved by polypropylene fibers were explored. Results showed that the shear strength of shallow expansive soil exhibited significant nonlinearity, which could be represented by a power function. Moreover, it was observed that the nonlinearity of the shear strength of the expansive soil became more prominent with the increase of mass fraction of water and the decrease of cell pressure. Adopting shear strength parameters obtained from triaxial shear tests under high cell pressure led to an overestimation of the cohesion of saturated shallow expansive soil by 225.7% and an underestimation of the internal friction angle by 42.5%. The shear strength of expansive soil was significantly enhanced by adding fibers, and the degree of enhancement was related to the formation of three-dimensional fiber network within the soil. Longer fibers were more effective in reducing the attenuation rate of shear strength, which weakened the strain-softening effect of expansive soil. However, excessively long fibers may bend and twist within the soil, leading to the degradation of the fiber-expansive soil interface during soil deformation.

Key words: low cell pressure    expansive soil    shear strength    fiber network structure    strain softening    fiber-soil interface interaction
收稿日期: 2023-03-17 出版日期: 2024-03-05
CLC:  TU 443  
基金资助: 国家自然科学基金资助项目(52208348,52208347);江西省自然科学基金资助项目(20232BAB204083,20224BAB214064,20224BAB214063);中国博士后基金资助项目(2023M731436);西康高铁膨胀土路基建造关键技术研究资助项目(XKGT-07-GGB2022-037).
通讯作者: 吕志涛     E-mail: junyidjy@163.com;lvzhitao90@126.com
作者简介: 段君义(1991—),男,讲师,从事特殊土力学特性及其变形控制研究. orcid.org/0000-0002-1798-833X. E-mail:junyidjy@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
段君义
吴俊江
粟雨
吕志涛
林宇亮
杨果林

引用本文:

段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性[J]. 浙江大学学报(工学版), 2024, 58(3): 547-556.

Junyi DUAN,Junjiang WU,Yu SU,Zhitao LV,Yuliang LIN,Guolin YANG. Shear strength characteristics of shallow expansive soil and its fiber improved soil. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 547-556.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.012        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/547

d/μmρ/(g·cm?3)f/MPaE/GPaδ/%θ/℃
34.60.914694.220169
表 1  聚丙烯纤维的主要技术参数
图 1  试验过程中的实物图
图 2  水的质量分数为17.5%时膨胀土的应力应变曲线
图 3  水的质量分数为20.7%时膨胀土的应力应变曲线
图 4  水的质量分数为24.4%时膨胀土的应力应变曲线
图 5  膨胀土的剪切强度衰减率随围压的变化
图 6  高、低围压段下膨胀土Kf强度线
图 7  库仑破坏准则强度包络线与真实强度包络线的差异
图 8  膨胀土剪切强度非线性特征的幂函数拟合结果
图 9  掺入质量分数为0.3%时聚丙烯纤维改良膨胀土应力应变曲线
图 10  破坏试样剪切面上纤维受拉情况
图 11  纤维改良膨胀土的剪切强度峰值及衰减规律
图 12  纤维改良膨胀土机理示意图
图 13  纤维长度及其掺入质量分数对膨胀土峰值强度的影响
图 14  纤维长度为3 mm、掺入质量分数为0.3%时纤维搭接成的网状结构
图 15  聚丙烯纤维损伤与破坏情况
图 16  纤维改良膨胀土抗剪强度参数随纤维掺入质量分数的变化
1 徐永福, 程岩, 肖杰, 等 膨胀土滑坡和工程边坡新型防治技术研究[J]. 岩土工程学报, 2022, 44 (7): 1281- 1294
XU Yongfu, CHENG Yan, XIAO Jie, et al New prevention and control technology for expansive soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (7): 1281- 1294
2 DUAN J Y, YANG G L, HU M, et al Heave performance of a ballastless track subgrade of double line high-speed railway filled with micro-expansive andesite under water immersion[J]. Construction and Building Materials, 2020, 252: 119087
doi: 10.1016/j.conbuildmat.2020.119087
3 何芳婵, 张俊然 原状膨胀土干湿过程中持水特性及孔隙结构分析[J]. 应用基础与工程科学学报, 2022, 30 (3): 736- 747
HE Fangchan, ZHANG Junran Water retention behavior and pore structure analysis of undisturbed expansive soil during drying and wetting[J]. Journal of Basic Science and Engineering, 2022, 30 (3): 736- 747
4 肖杰, 杨和平, 林京松, 等 模拟干湿循环及含低围压条件的膨胀土三轴试验[J]. 中国公路学报, 2019, 32 (1): 21- 28
XIAO Jie, YANG Heping, LIN Jingsong, et al Simulating wet-dry cycles and low confining pressures triaxial test on expansive soil[J]. China Journal of Highway and Transport, 2019, 32 (1): 21- 28
5 杨和平, 王兴正, 肖杰 干湿循环效应对南宁外环膨胀土抗剪强度的影响[J]. 岩土工程学报, 2014, 36 (5): 949- 954
YANG Heping, WANG Xingzheng, XIAO Jie Influence of wetting-drying cycles on strength characteristics of Nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (5): 949- 954
doi: 10.11779/CJGE201405020
6 张坤勇, 徐娜, 陈恕, 等 膨胀土完全软化强度指标试验研究[J]. 岩土工程学报, 2020, 42 (11): 1988- 1995
ZHANG Kunyong, XU Na, CHEN Shu, et al Experimental study on fully softened shear strength of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (11): 1988- 1995
7 HOU T S, XU G L, SHEN Y J, et al Formation mechanism and stability analysis of the Houba expansive soil landslide[J]. Engineering Geology, 2013, 161: 34- 43
doi: 10.1016/j.enggeo.2013.04.010
8 杨果林, 陈子昂, 张红日, 等 干湿循环作用下平缓型膨胀土边坡失稳破坏机制研究[J]. 中南大学学报:自然科学版, 2022, 53 (1): 95- 103
YANG Guolin, CHEN Ziang, ZHANG Hongri, et al Collapse mechanism of gentle expansive soil slope in drying and wetting cycles[J]. Journal of Central South University: Science and Technology, 2022, 53 (1): 95- 103
9 李彦龙, 汪自力 考虑水分迁移影响的浅层膨胀土抗剪强度冻融劣化特征[J]. 岩石力学与工程学报, 2019, 38 (6): 1261- 1269
LI Yanlong, WANG Zili Shear strength degradation characteristics of expansive soil during freeze-thaw process considering moisture migration[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (6): 1261- 1269
10 GU L L, WANG Z, HOSOYA A H, et al Dilatancy and liquefaction behaviour of clean sand at wide range of confining stresses[J]. Journal of Central South University, 2020, 27 (8): 2394- 2407
doi: 10.1007/s11771-020-4457-0
11 连继峰, 罗强, 张文生, 等 路堤边坡膨胀土强度非线性应力阈值与浅层稳定性[J]. 哈尔滨工业大学学报, 2021, 53 (3): 142- 151
LIAN Jifeng, LUO Qiang, ZHANG Wensheng, et al Nonlinear stress threshold for expansive soil strength and shallow stability of embankment slope[J]. Journal of Harbin Institute of Technology, 2021, 53 (3): 142- 151
12 CHEN G Y, HE P, WANG G, et al Shallow layer destruction law of expansive soil slope under rainfall and the application of geogrid reinforcement[J]. Geofluids, 2021, 2021: 6636894
13 HE P, LI S C, XIAO J, et al Shallow sliding failure prediction model of expansive soil slope based on gaussian process theory and its engineering application[J]. KSCE Journal of Civil Engineering, 2018, 22 (5): 1709- 1719
doi: 10.1007/s12205-017-1934-6
14 刘斯宏, 沈超敏, 程德虎, 等 土工袋加固膨胀土边坡降雨-日晒循环试验研究[J]. 岩土力学, 2022, 43 (Supp1. 2): 35- 42
LIU Sihong, SHEN Chaomin, CHENG Dehu, et al Model test of expansive soil slope with soilbags during rainfall-insolation cycles[J]. Rock and Soil Mechanics, 2022, 43 (Supp1. 2): 35- 42
15 TIWARI N, SATYAM N An experimental study on strength improvement of expansive subgrades by polypropylene fibers and geogrid reinforcement[J]. Scientific Reports, 2022, 12 (1): 6685
doi: 10.1038/s41598-022-10773-0
16 庄心善, 周睦凯, 周荣, 等 EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报:工学版, 2022, 56 (7): 1353- 1403
ZHUANG Xinshan, ZHOU Mukai, ZHOU Rong, et al Pore characteristics and hysteresis curve morphology of expansive soil improved by EPS[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (7): 1353- 1403
17 郝建斌, 张焕, 李耕春, 等 粉煤灰-剑麻纤维复合改良膨胀土强度及裂隙发育特性[J]. 铁道科学与工程学报, 2022, 19 (9): 2620- 2628
HAO Jianbin, ZHANG Huan, LI Gengchun, et al Strength and cracking characteristics of expansive soil improved by fly ash and sisal fiber[J]. Journal of Railway Science and Engineering, 2022, 19 (9): 2620- 2628
18 WANG Y X, GUO P P, REN W X, et al Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement[J]. International Journal of Geomechanics, 2017, 17 (11): 4017101
doi: 10.1061/(ASCE)GM.1943-5622.0000998
19 WANG Y X, GUO P P, LIN H, et al Numerical analysis of fiber-reinforced soils based on the equivalent additional stress concept[J]. International Journal of Geomechanics, 2019, 19 (11): 4019122
doi: 10.1061/(ASCE)GM.1943-5622.0001504
20 WANG Y X, GUO P P, DAI F, et al Behavior and modeling of fiber-reinforced clay under triaxial compression by combining the superposition method with the energy-based homogenization technique[J]. International Journal of Geomechanics, 2018, 18 (12): 4018172
doi: 10.1061/(ASCE)GM.1943-5622.0001313
21 王琴琴, 陈开圣 干湿循环下橡胶-红黏土抗剪强度及裂隙的演变规律研究[J]. 广西大学学报:自然科学版, 2022, 47 (2): 340- 348
WANG Qinqin, CHEN Kaisheng Study on shear strength and fracture evolution of rubber-red clay under drying-wetting cycles[J]. Journal of Guangxi University: Natural Science Edition, 2022, 47 (2): 340- 348
22 POWRIE W, YANG L A, CLAYTON C R I Stress changes in the ground below ballasted railway track during train passage[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2007, 221 (2): 247- 261
doi: 10.1243/0954409JRRT95
23 CHADUVULA U, VISWANADHAM B V S, KODIKARA J Centrifuge model studies on desiccation cracking behaviour of fiber-reinforced expansive clay[J]. Geotextiles and Geomembranes, 2022, 50 (3): 480- 497
doi: 10.1016/j.geotexmem.2022.02.001
24 PHANIKUMAR B R, SINGLA R Swell-consolidation characteristics of fibre-reinforced expansive soils[J]. Soils and Foundations, 2016, 56 (1): 138- 143
doi: 10.1016/j.sandf.2016.01.011
25 中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019: 110-111.
26 刘先峰, 潘申鑫, 袁胜洋, 等 压实红层泥岩填料强度与刚度软化和衰减特性研究[J]. 铁道科学与工程学报, 2022, 19 (9): 2629- 2636
LIU Xianfeng, PAN Shenxin, YUAN Shengyang, et al Study on stiffness softening and attenuation characteristics of compacted red mudstone[J]. Journal of Railway Science and Engineering, 2022, 19 (9): 2629- 2636
27 CHEN G Q, CHEN T, CHEN Y, et al A new method of predicting the prestress variations in anchored cables with excavation unloading destruction[J]. Engineering Geology, 2018, 241: 109- 120
doi: 10.1016/j.enggeo.2018.05.015
28 GHAYOOMI M, SUPRUNENKO G, MIRSHEKARI M Cyclic triaxial test to measure strain-dependent shear modulus of unsaturated sand[J]. International Journal of Geomechanics, 2017, 17 (9): 4017043
doi: 10.1061/(ASCE)GM.1943-5622.0000917
29 冷伍明, 艾希, 徐方, 等 新型预应力路基水平向附加应力扩散规律研究[J]. 岩土工程学报, 2019, 41 (8): 1445- 1454
LENG Wuming, AI Xi, XU Fang, et al Diffusion laws of horizontal additional stress in a new prestressed subgrade[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (8): 1445- 1454
30 ZHANG Q S, LENG W M, XU F, et al Additional stress in soil embankments subjected to a new prestressed reinforcement device[J]. Journal of Civil Engineering and Management, 2019, 25 (7): 700- 714
doi: 10.3846/jcem.2019.10532
31 LADE P V The mechanics of surficial failure in soil slopes[J]. Engineering Geology, 2010, 114 (1-2): 57- 64
doi: 10.1016/j.enggeo.2010.04.003
32 荣德政, 唐朝生, 曾浩, 等 纤维加筋土坯的蒸发过程及抗拉强度特性[J]. 岩土工程学报, 2021, 43 (4): 670- 678
RONG Dezheng, TANG Chaosheng, ZENG Hao, et al Evaporation process and tensile behavior of fiber-reinforced rammed earth[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (4): 670- 678
33 李建, 唐朝生, 王德银, 等 基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J]. 岩土工程学报, 2014, 34 (9): 1696- 1704
LI Jian, TANG Chaosheng, WANG Deyin, et al Single fiber pullout tests on interfacial shear strength of wave-shape fiber-reinforced soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 34 (9): 1696- 1704
[1] 金俊超,景来红,杨风威,宋志宇,尚朋阳. 脆塑性迭代逼近算法的改进[J]. 浙江大学学报(工学版), 2023, 57(9): 1706-1717.
[2] 李丽华,李孜健,肖衡林,黄少平,刘一鸣. 稻壳灰-高炉矿渣固化膨胀土工程特性及机理[J]. 浙江大学学报(工学版), 2023, 57(9): 1736-1745.
[3] 龚涛,刘开富,谢新宇,许纯泰,娄扬,郑凌逶. 基于次加载面摩擦模型的接触面剪切特性研究[J]. 浙江大学学报(工学版), 2022, 56(7): 1328-1335, 1352.
[4] 庄心善,周睦凯,周荣,陶高梁. EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报(工学版), 2022, 56(7): 1353-1362, 1403.
[5] 蒋佳琪,徐日庆,裘志坚,詹晓波,汪悦,成广谋. 超固结土的蛋形弹塑性本构模型[J]. 浙江大学学报(工学版), 2021, 55(8): 1444-1452.
[6] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[7] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[8] 蔡袁强 陈静 王军. 循环荷载下各向异性软黏土应变-软化模型[J]. J4, 2008, 42(6): 1058-1064.
[9] 胡士兵 王金昌 朱向荣. 线性软化土体中球孔扩张问题的解析解[J]. J4, 2007, 41(9): 1503-1507.
[10] 詹良通. 非饱和膨胀土边坡中土水相互作用机理[J]. J4, 2006, 40(3): 494-500.