Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (12): 2476-2488    DOI: 10.3785/j.issn.1008-973X.2023.12.015
土木工程、水利工程     
地基沉降引发输水盾构隧道复合结构受弯分析
周浙件1(),范毅雄2,方燃2,边学成1,*()
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 中国市政工程中南设计研究总院有限公司,湖北 武汉 430010
Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels
Zhe-jian ZHOU1(),Yi-xiong FAN2,Ran FANG2,Xue-cheng BIAN1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Central and Southern China Municipal Engineering Design and Research Institute Limited Company, Wuhan 430010, China
 全文: PDF(2049 KB)   HTML
摘要:

结合混凝土、螺栓和钢管的弹塑性变形特性,基于纵向等效连续模型和平截面假定,建立衬砌管片、输水钢管及在衬砌管片与输水钢管之间填充混凝土的受弯分析模型. 求解该模型,得到地基沉降作用下盾构隧道纵向接缝张开量、最大混凝土压应变及最大钢管拉应变等关键参数. 将所建模型应用于杭州某输水盾构隧道工程,结果表明:地基沉降引起隧道受弯,隧道结构将产生7类临界状态,且先后顺序为螺栓达到屈服应力、环缝张开2 mm (螺栓和管片混凝土被侵蚀)、钢管达到屈服应力、环缝张开6 mm(钢管和填充混凝土被侵蚀)、管片混凝土开始受压屈服、填充混凝土开始受压屈服、螺栓达到破坏应力. 当钢管紧贴衬砌管壁时,隧道结构处于最不利工况,容易导致钢管腐蚀和隧道脆性破坏.

关键词: 输水盾构隧道复合结构受弯分析模型受弯性能设计优化    
Abstract:

Combining the elastic-plastic deformation characteristics of concrete, bolts, and steel tube, a model for bending analysis of tunnel lining segments, water-conveying steel tube, and concrete filled in between tunnel lining segments and water-conveying steel tube was established based on the longitudinal equivalent continuous model and the plane cross-section assumption. The key parameters for the shield tunnel under the influence of ground settlement were obtained by solving the model. These parameters include the longitudinal joint opening of shield tunnels, the maximum concrete compressive strain, and the maximum steel tube tensile strain. The established model was applied to a water-conveying shield tunnel project in Hangzhou. The results indicate that ground settlement causes the tunnel to bend, leading to seven critical states in the tunnel structure. The sequence of these critical states is as follows: bolts reach yield stress, 2 mm opening of circumferential joints (bolts and segment concrete are eroded), steel tube reaches yield stress, 6 mm opening of circumferential joints (filled concrete-steel tube is eroded), segment concrete begins to experience compressive yield, filled concrete begins to experience compressive yield, and bolts reach failure stress. When the steel tube is in close contact with the lining wall, the tunnel structure is in the most unfavorable condition, which can lead to steel tube corrosion and tunnel brittle failure.

Key words: water-conveying shield tunnel    composite structure    bending analysis model    bending property    design optimization
收稿日期: 2023-02-08 出版日期: 2023-12-27
CLC:  TU 43  
基金资助: 国家杰出青年基金资助项目(52125803);中央高校基本科研业务费专项资金资助项目(226-2022-00196)
通讯作者: 边学成     E-mail: 976008595@qq.com;bianxc@zju.edu.cn
作者简介: 周浙件(1997—),男,硕士生,从事盾构隧道研究. orcid.org/0000-0002-7175-6177. E-mail: 976008595@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周浙件
范毅雄
方燃
边学成

引用本文:

周浙件,范毅雄,方燃,边学成. 地基沉降引发输水盾构隧道复合结构受弯分析[J]. 浙江大学学报(工学版), 2023, 57(12): 2476-2488.

Zhe-jian ZHOU,Yi-xiong FAN,Ran FANG,Xue-cheng BIAN. Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2476-2488.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.015        https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2476

图 1  输水盾构隧道复合结构截面图
图 2  复合结构受弯变形示意图
图 3  混凝土、螺栓和钢管的应力-应变曲线
图 4  盾构隧道衬砌管片的应力和变形
图 5  中性轴位于截面钢管外径内填充混凝土-钢管的应力和变形
图 6  中性轴位于截面钢管外径外填充混凝土-钢管的应力和变形
图 7  解析模型计算流程
结构 参数 数值
管片 隧道外径 D/m 6.2
衬砌厚度 t/mm 350
环宽 ls/m 1.0
混凝土弹性模量 Ec/kPa 3.45×107
混凝土屈服应变 0.002
螺栓 数量 nb 17
直径 db/mm 30
长度 lb/mm 400
弹性模量 Eb/kPa 2.06×108
屈服应力 fy/kPa 6.40×105
极限应力 fu/kPa 8.00×105
预应力 N1/kPa 7.00×104
表 1  上海地铁一号线纵向接头主要参数[18]
本研究模型 文献[19]模型 $\varDelta$/%
ρ/m δj/mm M/(103 kN·m) ρ/m δj/mm M/(103 kN·m)
15 000 0.32 8.78 15 000 0.32 8.38 0
8 780 0.55 14.99 8 694 0.55 14.00 0.99
2 703 2.00 19.19 2 951 2.00 19.39 8.40
943 6.00 19.78 971 6.00 21.21 2.88
578 9.90 19.88
369 15.60 19.93 369 15.60 24.00 0
表 2  管环衬砌变形受力对比验证
结构 参数 数值
管片 隧道外径D/m 6.2
衬砌厚度t/mm 350
环宽ls/m 1.0
混凝土弹性模量Ec/kPa 3.45×107
混凝土屈服应变 0.002
螺栓 数量nb 17
直径db/mm 30
长度lb/mm 400
弹性模量Eb/kPa 2.06×108
屈服应力fy/kPa 6.40×105
极限应力fu/kPa 8.00×105
预应力N1/kPa 7.00×104
填充混凝土 弹性模量Ec/kPa 2.80×107
屈服应变 0.002
钢管 外径D1/m 3.6
厚度t1/mm 22
弹性模量Ept/kPa 2.09×108
屈服应力fypt/kPa 3.25×105
表 3  输水隧道纵向接头主要参数
图 8  环缝张开量和最大管片混凝土压应变
图 9  管环衬砌弯矩与曲率的关系
图 10  最大钢管拉应变和最大填充混凝土压应变
图 11  填充混凝土-钢管弯矩与曲率的关系
临界状态 正弯矩受力状态 负弯矩受力状态
ρ/m δj/mm M/(103 kN·m) ρ/m δj/mm M/(103 kN·m)
3) 10 558 0.54 40.05 10 558 0.54 32.84
1) 3 206 2.00 103.49 3 206 2.00 79.75
5) 2 132 3.12 146.79 1 856 3.55 124.92
2) 1 122 6.00 188.24 1 122 6.00 153.99
6) 757 9.00 203.02 757 9.00 166.51
7) 510 465
4) 278 15.20 278 15.20
表 4  不同弯矩受力状态下复合结构临界状态对应的界限指标值
图 12  钢管偏心位置影响曲线
图 13  钢管外径影响曲线
图 14  钢管厚度影响曲线
图 15  填充混凝土弹性模量影响曲线
图 16  钢管弹性模量影响曲线
1 SHEN S L, WU H N, CUI Y J, et al Long−term settlement behaviour of metro tunnels in the soft deposits of shanghai[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2014, 40 (2): 309- 323
2 DI H, ZHOU S, GUO P, et al Observed long−term differential settlement of metro structures built on soft deposits in the Yangtze River Delta region of China[J]. Canadian Geotechnical Journal, 2020, 57 (6): 840- 850
doi: 10.1139/cgj-2018-0524
3 小泉淳, 村上博智, 西野健三. ツールドトネルの轴方向特性のモデルイヒにつぃて [C]// 土木学会论文集. 东京: 土木学会, 1988: 79−88.
KOIZUMI A, MURAKAMI H, NISHINO K. Study on the analytical model of shield tunnel in longitudinal direction [C]// Journal of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 1988: 79−88.
4 志波由纪夫, 川島一彦, 大日方尚己, 等. ツールドトンネルの耐震解析に用いる長手方向覆工剛性の評価法 [C]// 土木学会论文集. 东京: 土木学会, 1988: 319−327.
SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses [C]// Journal of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 1988: 319−327.
5 徐 凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005.
XU Ling. Study on longitudinal settlement of soft soil shield tunnel [D]. Shanghai: Tongji University, 2005.
6 李翔宇, 刘国彬, 杨 潇, 等 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36 (4): 662- 670
LI Xiang-yu, LIU Guo-bin, YANG Xiao, et al Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (4): 662- 670
7 LI X, ZHUO X, HOMG B, et al Experimental and analytical study on longitudinal bending behavior of shield tunnel subjected to longitudinal axial forces[J]. Tunnelling and Underground Space Technology, 2019, 86: 128- 137
doi: 10.1016/j.tust.2019.01.011
8 CHENG H Z, CHEN R P, WU H N General solutions for the longitudinal deformation of shield tunnels with multiple discontinuities in strata[J]. Tunnelling and Underground Space Technology, 2021, 107: 103652
doi: 10.1016/j.tust.2020.103652
9 WANG Z, SHI C, GONG C, et al An enhanced analytical model for predicting the nonlinear longitudinal equivalent bending stiffness of shield tunnels incorporating combined N−M actions[J]. Tunnelling and Underground Space Technology, 2022, 126: 104567
doi: 10.1016/j.tust.2022.104567
10 梁荣柱, 王凯超, 黄亮, 等 类矩形盾构隧道纵向等效抗弯刚度解析解[J]. 岩土工程学报, 2022, 44 (2): 212- 223
LIANG Rong-zhu, WANG Kai-chao, HUANG Liang, et al Analytical solution of longitudinal equivalent flexural stiffness of quasi rectangular shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (2): 212- 223
11 ASSOCIATION W, Guidelines for the design of shield tunnel lining [J]. Tunnelling and Underground Space technology, 2000, 15(3): 303−331.
12 中华人民共和国住房和城乡建设部. 地铁设计规范: GB 50157—2013 [S]. 北京: 中国建筑工业出版社, 2013.
13 HOGNESTAD E Inelastic behavior in tests of eccentrically loaded short reinforced concrete columns[J]. American Concrete Institute Journal Proceedings, 1952, 49 (10): 117- 139
14 American Concrete Institute. Building code requirements for structural concrete and commentary: ACI 318−11 [S]. Farmington Hills: ACI, 2011.
15 PARK R, PAULAY T. Reinforced concrete structures [M]. New York: John Wiley and Sons, 1975.
16 TENG J G, HU Y M Behaviour of FRP−jacketed circular steel tubes and cylindrical shells under axial compression[J]. Construction and Building Materials, 2007, 21 (4): 827- 838
doi: 10.1016/j.conbuildmat.2006.06.016
17 潘友光, 钟善桐 钢管混凝土轴心受拉本构关系[J]. 工业建筑, 1990, (4): 30- 37
PAN You-guang, ZHONG Shan-tong The axis tensile constitutive relationship of concrete filled steel tubes[J]. Industrial Construction, 1990, (4): 30- 37
doi: 10.13204/j.gyjz1990.04.007
18 郑永来, 韩文星, 童琪华, 等 软土地铁隧道纵向不均匀沉降导致的管片接头环缝开裂研究[J]. 岩石力学与工程学报, 2005, 24 (24): 4552- 4558
ZHENG Yong-lai, HAN Wen-xing, TONG Qi-hua, et al Study on longitudinal crack of shield tunnel segment joint due to asymmetric settlement in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (24): 4552- 4558
19 鲁志鹏. 基于静态量测数据的盾构法地铁隧道建设和运营安全评价研究[D]. 上海: 同济大学, 2008.
LU Zhi-peng. Study on the safety evaluation of tunnel construction and operation based on static measurement data [D]. Shanghai: Tongji University, 2008.
20 张迪, 陈睿杰, 廖少明 盾构隧道双层衬砌结构纵向等效弯曲刚度研究——以上海吴淞口长江隧道工程为例[J]. 隧道建设, 2021, 41 (Suppl.1): 28- 35
ZHANG Di, CHEN Rui-jie, LIAO Shao-ming Study of longitudinal equivalent bending stiffness of double−layered lining of shield tunnel: a case study of Wusongkou Yangtze River-crossing tunnel in Shanghai[J]. Tunnel Construction, 2021, 41 (Suppl.1): 28- 35
[1] 肖彤,张明山,李本悦,徐铨彪,龚顺风. 叠合板板侧凹槽拼缝连接受弯性能试验研究[J]. 浙江大学学报(工学版), 2023, 57(4): 842-854.
[2] 陈伟航,罗强,王腾飞,张文生,蒋良潍. DMC复合地基工后沉降可靠性分析及设计优化[J]. 浙江大学学报(工学版), 2022, 56(10): 2019-2027.
[3] 罗斌,黄炜,马相,李斌,周文彩,任杉杉. 采用发泡聚苯乙烯保温砂浆芯材的夹芯叠合板受弯性能[J]. 浙江大学学报(工学版), 2019, 53(11): 2185-2196.
[4] 栾丛丛, 姚鑫骅, 刘丞哲, 傅建中. 碳纤维-热塑性复合材料三维打印及其自监测[J]. 浙江大学学报(工学版), 2017, 51(9): 1808-1814.
[5] 雷明玮, 龚顺风, 胡勍. 纯弯作用下深海夹层管复合结构屈曲失稳分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2376-2386.
[6] 龚顺风,胡勍. 外压作用深海夹层管复合结构屈曲失稳分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1624-1631.
[7] 王惠明,赵志城. 界面缺陷对压电薄层复合结构中Love波的影响[J]. J4, 2012, 46(3): 555-559.
[8] 欧海英, 李晓宇, 付战平. 设计优化中的非线性主轴降维映射法[J]. J4, 2010, 44(1): 87-93.
[9] 刘海强, 纪杨建, 祁国宁, 等. 支持多学科设计优化的产品集成设计知识模型研究[J]. J4, 2009, 43(10): 1841-1847.
[10] 孙晓燕 王海龙 黄承逵. 超载运营对服役桥梁受弯性能影响的试验研究[J]. J4, 2008, 42(1): 152-156.