Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (10): 2086-2093    DOI: 10.3785/j.issn.1008-973X.2023.10.017
机械工程、能源工程     
制冷剂快速泄漏过程中分体空调系统运行特性的实验研究
张绍志1,2(),方家浩1,2,梁璐瑶1,2,李泽田1,2,陈光明1,2,*()
1. 浙江省制冷与低温技术重点实验室,浙江 杭州 310027
2. 浙江大学制冷与低温研究所,浙江 杭州 310027
Experimental study on operating characteristics of split air conditioning system during rapid leakage of refrigerant
Shao-zhi ZHANG1,2(),Jia-hao FANG1,2,Lu-yao LIANG1,2,Ze-tian LI1,2,Guang-ming CHEN1,2,*()
1. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027, China
2. Institute of Refrigeration and Cryogenic, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1701 KB)   HTML
摘要:

为了探究制冷系统的制冷剂在快速泄漏过程中,泄漏与运行之间的交互作用,搭建了能够监控制冷剂泄漏量的家用空调制冷系统泄漏实验台,并对泄漏过程中制冷系统的运行情况开展了实验. 在泄漏点位于室内机侧、初始制冷剂充注量为920 g、初始泄漏速率变化为0.08~0.60 g/s时,随着泄漏过程的进行,压缩机排气温度不断上升,蒸发器入口温度、冷凝压力、蒸发压力、冷凝器出口过冷度以及压缩机功率不断下降. 当制冷剂泄漏比例达到某一临界点时,上述运行参数会发生加速的情况. 在制冷模式下,临界比例约为20%,热泵模式下约为15%. 制冷剂的泄漏速度随时间逐渐减小,泄漏开始1 h后制冷和制热模式下的泄漏速度分别减小了55.7%和63.6%.

关键词: 制冷剂泄漏制冷系统运行性能空调    
Abstract:

A test rig that could monitor and control the refrigerant leakage from a household air-conditioner was built to study the interaction between leakage and running in the rapid refrigerant leakage process of refrigeration system. Experiments were carried out to investigate the system operation during the leakage process. The leak point was located indoor, the initial refrigerant charge was 920 g, and the initial leakage rate was from 0.08 to 0.60 g/s. The discharge temperature of compressor continuously rose, while the condensing pressure, the evaporating pressure, the inlet temperature of evaporator, the subcooling at outlet of condenser, and the compressor power consumption continuously decreased as the leakage process went on. The change of the above operating parameters would speed up when a critical ratio of refrigerant leakage was reached. The critical ratio was about 20% in refrigeration mode, and the critical ratio was about 15% in heating mode. The leakage rate gradually decreased as time elapsed. The leakage rates would be decreased by 55.7% and 63.6% respectively under refrigeration and heating modes.

Key words: refrigerant    leakage    refrigeration system    operation performance    air conditioner
收稿日期: 2022-11-07 出版日期: 2023-10-18
CLC:  TK 01+8  
基金资助: 国家自然科学基金资助项目(51936007)
通讯作者: 陈光明     E-mail: enezsz@zju.edu.cn;gmchen@zju.edu.cn
作者简介: 张绍志(1972—),男,教授,博士,从事制冷空调研究. orcid.org/0000-0002-5746-4266. E-mail: enezsz@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张绍志
方家浩
梁璐瑶
李泽田
陈光明

引用本文:

张绍志,方家浩,梁璐瑶,李泽田,陈光明. 制冷剂快速泄漏过程中分体空调系统运行特性的实验研究[J]. 浙江大学学报(工学版), 2023, 57(10): 2086-2093.

Shao-zhi ZHANG,Jia-hao FANG,Lu-yao LIANG,Ze-tian LI,Guang-ming CHEN. Experimental study on operating characteristics of split air conditioning system during rapid leakage of refrigerant. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2086-2093.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.017        https://www.zjujournals.com/eng/CN/Y2023/V57/I10/2086

图 1  系统泄漏实验台的流程图
图 2  系统泄漏实验台室内机的实物图
图 3  系统泄漏实验台室外机的实物图
仪器 型号 量程 测量精度
压力传感器 OHR-M2G-3-L 0~6.0 MPa 0.2%
热电偶 T型四氟热电偶 ?50~260 ℃ ±0.5 ℃
功率表 NHR-3100电量表 0~500 V(电压)
0.03~5.00 A(电流)
±(0.2%读数
+0.1%量程)
湿式气体流量计 LML-1 300 L/h ±1%
表 1  实验测量设备的参数
图 4  泄漏单元的示意图
图 5  湿式气体流量计泄漏量测量的准确性验证
图 6  随泄漏进程变化的泄漏速度
图 7  随泄漏进程变化系统内的剩余充注量
图 8  随泄漏进程变化的排气温度
图 9  随泄漏进程变化蒸发器的入口温度
图 10  随泄漏进程变化的蒸发器入口压力
图 11  随系统内剩余充注量变化的过冷度
图 12  随系统内剩余充注量变化的过热度
图 13  随泄漏进程变化的系统功率
1 FRANCIS C, MAIDMENT G, DAVIES G An investigation of refrigerant leakage in commercial refrigeration[J]. International Journal of Refrigeration, 2017, 74: 12- 21
doi: 10.1016/j.ijrefrig.2016.10.009
2 ROGERS A P, GUO F, RASMUSSEN B P A review of fault detection and diagnosis methods for residential air conditioning systems[J]. Building and Environment, 2019, 161: 106236
doi: 10.1016/j.buildenv.2019.106236
3 ROSSI T M, BRAUN J E A statistical, rule-based fault detection and diagnostic method for vapor compression air conditioners[J]. HVAC and R Research, 1997, 3 (1): 19- 37
doi: 10.1080/10789669.1997.10391359
4 BEHFAR A, YUILL D, YU Y Automated fault detection and diagnosis for supermarkets–method selection, replication, and applicability[J]. Energy and Buildings, 2019, 198: 520- 527
doi: 10.1016/j.enbuild.2019.06.011
5 SUN K, LI G, CHEN H, et al A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system ’s refrigerant charge fault amount[J]. Applied Thermal Engineering, 2016, 108: 989- 998
doi: 10.1016/j.applthermaleng.2016.07.109
6 COTRUFO N, ZMEUREANU R PCA-based method of soft fault detection and identification for the ongoing commissioning of chillers[J]. Energy and Buildings, 2016, 130: 443- 452
doi: 10.1016/j.enbuild.2016.08.083
7 LIU J, SHI D, LI G, et al Data-driven and association rule mining-based fault diagnosis and action mechanism analysis for building chillers[J]. Energy and Buildings, 2020, 216: 109957
doi: 10.1016/j.enbuild.2020.109957
8 SHI S, LI G, CHEN H, et al An efficient VRF system fault diagnosis strategy for refrigerant charge amount based on PCA and dual neural network model[J]. Applied Thermal Engineering, 2018, 129: 1252- 1262
doi: 10.1016/j.applthermaleng.2017.09.117
9 EOM Y H, YOO J W, HONG S B, et al Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving[J]. Energy, 2019, 187: 115877
doi: 10.1016/j.energy.2019.115877
10 VJACHESLAV N, ROZHENTSEV A, WANG C Rationally based model for evaluating the optimal refrigerant mass charge in refrigerating machines[J]. Energy Conversion and Management, 2001, 42 (18): 2083- 2095
doi: 10.1016/S0196-8904(00)00164-3
11 CHEN X, LI Z, ZHAO Y, et al Modelling of refrigerant distribution in an oil-free refrigeration system using R134a[J]. Energies, 2019, 12 (24): 4792
doi: 10.3390/en12244792
12 黄小清. 数据中心空调系统制冷剂泄漏故障的检测与诊断研究[D]. 上海: 上海交通大学, 2018: 23-28.
HUANG Xiao-qing. Research on detection and diagnosis of refrigerant leakage fault in air conditioning system of data center [D]. Shanghai: Shanghai Jiao Tong University, 2018: 23-28.
13 ZHAO X, YANG M, LI H Field implementation and evaluation of a decoupling-based fault detection and diagnostic method for chillers[J]. Energy and Buildings, 2014, 72: 419- 430
doi: 10.1016/j.enbuild.2014.01.003
14 张网, 杨昭, 王婕, 等 分体式空调器使用R290作为制冷剂的泄漏研究[J]. 制冷学报, 2013, 34 (6): 42- 47
ZHANG Wang, YANG Zhao, WANG Jie, et al Research on leakage of split air conditioner using R290 as refrigerant[J]. Journal of Refrigeration, 2013, 34 (6): 42- 47
15 唐唯尔. R290在房间空调器和热泵系统中应用的安全性研究[D]. 武汉: 华中科技大学, 2018: 34-40.
TANG Wei-er. Study on the safety of R290 applied in room air conditioner and heat pump system [D]. Wuhan: Huazhong University of Science and Technology, 2018: 34-40.
16 TANG W, HE G, ZHOU S, et al The experimental study of R290 mass distribution and indoor leakage of 2 HP and 3 HP split type household air conditioner[J]. International Journal of Refrigeration, 2019, 100: 246- 254
doi: 10.1016/j.ijrefrig.2019.02.001
17 HU X, ZHANG Z, YAO Y, et al Experimental analysis on refrigerant charge optimization for cold storage unit[J]. Procedia Engineering, 2017, 205: 1108- 1114
doi: 10.1016/j.proeng.2017.10.179
18 LI Z, JIANG H, CHEN X, et al Optimal refrigerant charge and energy efficiency of an oil-free refrigeration system using R134a[J]. Applied Thermal Engineering, 2020, 164: 114473
doi: 10.1016/j.applthermaleng.2019.114473
19 PELELLA F, VISCITO L, MAURO A W Combined effects of refrigerant leakages and fouling on air-source heat pump performances in cooling mode[J]. Applied Thermal Engineering, 2022, 204: 117965
doi: 10.1016/j.applthermaleng.2021.117965
20 KNABBEN F T, RONZONI A F, HERMES C J L Effect of the refrigerant charge, expansion restriction, and compressor speed interactions on the energy performance of household refrigerators[J]. International Journal of Refrigeration, 2021, 130: 347- 355
doi: 10.1016/j.ijrefrig.2021.06.006
21 金梧凤, 张宁宁, 张燕, 等 可燃制冷剂R32室内空调器泄漏扩散特性的实验研究[J]. 制冷学报, 2015, 36 (6): 10- 16
JIN Wu-feng, ZHANG Ning-ning, ZHANG Yan, et al Experimental study on leakage and diffusion characteristics of combustible refrigerant R32 indoor air conditioner[J]. Journal of Refrigeration, 2015, 36 (6): 10- 16
[1] 王曌文,周昊,罗佳伟,伍其威,岑可法. 储罐地基材料在熔盐泄露后的导热系数研究[J]. 浙江大学学报(工学版), 2022, 56(1): 137-143.
[2] 孟庆龙,任效效,王文强,李洋,熊成燕. 考虑主动储能的HVAC需求响应策略实验与模拟[J]. 浙江大学学报(工学版), 2021, 55(6): 1175-1184.
[3] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.
[4] 李鑫悦,陈淑琴,李鸿亮,楼云霄,李佳鹤. 应用数据挖掘的高校教学建筑空调使用及其能耗分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1677-1689.
[5] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[6] 张虎,左逢源,张德胜,施卫东. 绕水翼间隙涡结构形成机理与间隙几何影响[J]. 浙江大学学报(工学版), 2020, 54(12): 2344-2355.
[7] 梁锦,罗坤,王强,杨续超,樊建人,张峻溪. 高反照率屋顶对城市热岛及空调能耗的影响[J]. 浙江大学学报(工学版), 2020, 54(10): 1993-2000.
[8] 孙艳红,张捷,韩健,高阳,肖新标. 高速列车风道消声器传声特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1389-1397.
[9] 吴海颖,朱鸿鹄,朱宝,齐贺. 基于分布式光纤传感的地下管线监测研究综述[J]. 浙江大学学报(工学版), 2019, 53(6): 1057-1070.
[10] 唐苇羽, 陈景祥, 韩锦程, 何燕, 李蔚, 刘志春. 不同强化换热管内流动沸腾换热特性对比[J]. 浙江大学学报(工学版), 2018, 52(6): 1216-1222.
[11] 韩联进, 巫江虹, 薛志强. 电动客车热泵空调系统仿真与改进[J]. 浙江大学学报(工学版), 2018, 52(4): 641-648.
[12] 巫江虹, 姜峰. 基于动态负荷的空调生命周期气候性能[J]. 浙江大学学报(工学版), 2017, 51(10): 2061-2069.
[13] 董凯, 赖俊英, 钱晓倩, 詹树林, 阮方. 夏热冬冷地区居住建筑水平式外遮阳节能效果[J]. 浙江大学学报(工学版), 2016, 50(8): 1431-1437.
[14] 曹丽华, 贾彦铭, 李盼, 胡鹏飞, 李勇. 汽轮机高低齿叶顶汽封泄漏流动的数值分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1545-1550.
[15] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.