Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (12): 2344-2355    DOI: 10.3785/j.issn.1008-973X.2020.12.009
机械工程、能源工程     
绕水翼间隙涡结构形成机理与间隙几何影响
张虎1,2(),左逢源2,张德胜1,施卫东3,*()
1. 江苏大学 流体机械工程技术研究中心,江苏 镇江 212013
2. 无锡职业技术学院 机械技术学院,江苏 无锡 214121
3. 南通大学 机械工程学院,江苏 南通 226019
Formation mechanism and geometric influence of tip clearance vortex structure around hydrofoil
Hu ZHANG1,2(),Feng-yuan ZUO2,De-sheng ZHANG1,Wei-dong SHI3,*()
1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
2. School of Mechanical Technology, Wuxi Institute of Technology, Wuxi 214121, China
3. School of Mechanical Engineering, Nantong University, Nantong 226019, China
 全文: PDF(4059 KB)   HTML
摘要:

为了分析绕水翼间隙涡结构形成机理和探究压力边圆角几何的影响,对绕NACA0009水翼间隙流动进行数值计算. 通过流线涡量云图三维可视化分析,得到间隙流动特征及涡结构,对涡强度进行对比. 对翼形中截面间隙进出口边速度和间隙区平面流线、压力、湍动能进行比较分析. 研究发现:直角叶顶水翼泄漏流在间隙进口边有较大的展向速度,在间隙内形成新月形分离区,在逆压梯度作用下形成叶顶分离涡(TSV),涡尺度与展向速度成正相关;叶顶泄漏涡(TLV)形成源于间隙出口边射流与吸力边侧低速流体之间的持续剪切作用,低速流体从剪切层获得持续的能量输运形成稳定的泄漏涡结构;间隙压力边圆角对TSV起抑制作用,降低了间隙区整体涡强度.

关键词: 水翼圆角几何叶顶分离涡(TSV)叶顶泄漏涡(TLV)展向速度涡结构    
Abstract:

Numerical calculations of gap flow around the NACA0009 hydrofoil were conducted to analyze the formation mechanism of tip clearance vortex structure and the influence of the pressure edge fillet geometry. The three-dimensional visualization of gap flow characteristics and vortex structure was realized by applying streamline vorticity cloud diagram, and the vortex intensity was compared. The clearance inlet and outlet velocity and streamlines, pressure, turbulent kinetic energy in gap area were compared. Results showed that the fluid particles entering from the inlet side had a larger spanwise velocity of the plain tip geometry. The leakage flow gradually formed a crescent shaped separation zone in the tip clearance area, and transformed into tip separation vortex(TSV) under the adverse pressure gradient. The scale of TSV is positively related to the spanwise velocity. The formation of the tip leakage vortex (TLV) originated from the continuous shear action between the tip-leakage jet and the low-speed fluid on the suction side. The low-speed fluid, which obtained the energy transporting from the shear layer, eventually evolved into a stable tip leakage vortex structure. The clearance fillet geometry, which has an inhibitory effect on TSV, effectively reduces the gap vortex strength.

Key words: hydrofoil    fillet geometry    tip separation vortex (TSV)    tip leakage vortex (TLV)    spanwise velocity    vortex structure
收稿日期: 2019-09-30 出版日期: 2020-12-31
CLC:  TK 72  
基金资助: 国家自然科学基金资助项目(51776087)
通讯作者: 施卫东     E-mail: zhanghutianxia@126.com;wdshi@ujs.edu.cn
作者简介: 张虎(1986—),男,博士生,从事流体机械性能优化研究. orcid.org/0000-0003-3727-8471. E-mail: zhanghutianxia@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张虎
左逢源
张德胜
施卫东

引用本文:

张虎,左逢源,张德胜,施卫东. 绕水翼间隙涡结构形成机理与间隙几何影响[J]. 浙江大学学报(工学版), 2020, 54(12): 2344-2355.

Hu ZHANG,Feng-yuan ZUO,De-sheng ZHANG,Wei-dong SHI. Formation mechanism and geometric influence of tip clearance vortex structure around hydrofoil. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2344-2355.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.009        http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2344

图 1  计算域与RT方案几何示意图
图 2  水翼网格分块结构及局部网格示意图
图 3  水翼流动实验[8]与不同数量网格数值计算空化等值面( ${{\alpha }_{\rm{v}}} = {\rm{0}}{\rm{.08}}$)结果对比
图 4  流向速度分布实验[8]与不同网格数计算结果对比
图 5  不同网格数下的速度曲线结果验证
图 6  PT方案的几何图
图 7  水翼表面压力分布
图 8  叶顶区间隙流及涡结构 (Q准则等值面附加 ${\omega _x} $云图和叶顶区空间流线)
图 9  叶顶间隙区平面流线与涡结构及其涡量 ${\omega _x}$分布
图 10  叶顶间隙区平面几何位置定义(x/c=0截面)
图 11  间隙内及进口边垂向速度分布
图 12  间隙内及进口边展向速度分布
图 13  间隙内速度梯度分布云图
图 14  间隙进口边圆周速度方向与z轴夹角
图 15  间隙内压力分布
图 16  PT方案间隙内平面流线及速度分布图
图 17  RT方案中间隙内平面流线及速度分布图
图 18  间隙内涡量 ${\omega _x}$和TKE分布云图
图 19  间隙出口边及TLV区圆周速度分布
图 20  吸力面一侧平面流线图
图 21  TLV区压力分布
图 22  TLV区速度梯度分布云图
图 23  TLV区涡量 ${{\omega }_{x}}$和TKE分布云图
图 24  RT方案中TLV在吸力面一侧发展演变过程
图 25  涡核中心轨迹分布
图 26  涡强度取值采样平面分布图
图 27  涡强度沿流向分布曲线
1 TAN D, LI Y, WILKES L, et al Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump[J]. Journal of Fluids Engineering, 2015, 137: 1- 14
2 ZHANG D, SHI L, SHI W, et al Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump[J]. International Journal of Multiphase Flow, 2015, 77: 244- 259
doi: 10.1016/j.ijmultiphaseflow.2015.09.006
3 CHENG H, BAI X, LONG X, et al Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence[J]. Applied Mathematical Modelling, 2019, 77: 788- 809
4 SHI L, ZHANG D, ZHAO R, et al Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump[J]. Sci China Tech Sci, 2017, 60 (10): 1480- 1493
doi: 10.1007/s11431-017-9046-9
5 GUO Q, ZHOU L, WANG Z Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil[J]. Renewable Energy, 2016, 99: 390- 397
doi: 10.1016/j.renene.2016.06.064
6 王天壹, 宣益民 阶梯形凹槽对涡轮叶顶泄漏流的影响[J]. 中国科学, 2020, 50: 1- 10
WANG Tian-yi, XUAN Yi-ming Effect of stepped squealer tip on flow of leakage through turbine blade tip[J]. Sci Sin Tech, 2020, 50: 1- 10
doi: 10.1360/SST-2019-0204
7 LIU Y, TAN L Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy[J]. Renewable Energy, 2020, 148: 907- 922
doi: 10.1016/j.renene.2019.10.175
8 DREYER M. Mind the gap: tip leakage vortex dynamics and cavitation in the axial turbines [D]. Lausanne: Swiss federal Institute of Technology in Lausanne(EPFL), 2015: 71-103.
9 DREYER M, DECAIX J, MUNCH-ALLIGNE C, et al Mind the gap: a new insight into the tip leakage vortex using stereo-PIV[J]. Experiments in Fluids, 2014, 55 (11): 1- 13
10 YOU D, WANG M, MOIN P, et al Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade[J]. Physics of Fluids, 2006, 18 (10): 105102
doi: 10.1063/1.2354544
11 YOU D, WANG M, MOIN P, et al Vortex dynamics and low-pressure fluctuations in the tip-clearance flow[J]. Journal of Fluids Engineering, 2007, 129 (8): 1002- 1014
doi: 10.1115/1.2746911
12 LABORDE R, CHANTREL P, MORY M, et al Tip clearance and tip vortex cavitation in an axial flow pump[J]. Journal of Fluids Engineering, 1997, 119 (3): 680- 685
doi: 10.1115/1.2819298
13 GIUNI M, GREEN R B Vortex formation on squared and rounded tip[J]. Aerospace Science and Technology, 2013, 29 (1): 191- 199
doi: 10.1016/j.ast.2013.03.004
14 DECAIX J, BALARAC G, DREYER M, et al RANS and LES computations of the tip-leakage vortex for different gap widths[J]. Journal of Turbulence, 2015, 16 (4): 309- 341
doi: 10.1080/14685248.2014.984068
15 SPALART P R, SHUR M On the sensitization of turbulence models to rotation and curvature[J]. Aerospace Science and Technology, 1997, 1 (5): 297- 302
doi: 10.1016/S1270-9638(97)90051-1
16 SMIRNOV P E, MENTER F R Sensitization of the SST turbulence model to rotation and curvature by applying the spalart–shur correction term[J]. Journal of Turbomachinery, 2009, 131 (4): 1- 8
17 GUO Q, ZHOU L, WANG Z, et al Numerical simulation for the tip leakage vortex cavitation[J]. Ocean Engineering, 2018, 151: 71- 81
doi: 10.1016/j.oceaneng.2017.12.057
[1] 谢玉东, 王勇, 马鹏磊, 逯建伟. 水翼振荡运动捕获潮流能的机理研究[J]. 浙江大学学报(工学版), 2018, 52(1): 65-72.
[2] 刘海宾, 王勇, 马鹏磊, 谢玉东. 基于平行式振荡翼系统参数耦合分析[J]. 浙江大学学报(工学版), 2017, 51(1): 153-159.
[3] 郝宗睿, 王乐勤, 吴大转. 水翼非定常空化流场的数值模拟[J]. J4, 2010, 44(5): 1043-1048.
[4] 李相鹏 周昊 岑可法. 涡结构对小颗粒在圆管背风面碰撞分布的影响[J]. J4, 2006, 40(4): 605-609.
[5] 邹建锋 任安禄. 串列双圆球的流场转捩研究[J]. J4, 2006, 40(1): 107-112.