Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 842-854    DOI: 10.3785/j.issn.1008-973X.2023.04.022
交通工程、土木工程     
叠合板板侧凹槽拼缝连接受弯性能试验研究
肖彤1(),张明山2,3,*(),李本悦2,3,徐铨彪2,3,龚顺风1
1. 浙江大学 土木工程学系,浙江 杭州 310058
2. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028
3. 浙江大学平衡建筑研究中心,浙江 杭州 310028
Experimental study on flexural performance of composite slab with groove splicing joint
Tong XIAO1(),Ming-shan ZHANG2,3,*(),Ben-yue LI2,3,Quan-biao XU2,3,Shun-feng GONG1
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
2. Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
3. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
 全文: PDF(2845 KB)   HTML
摘要:

为了提高叠合板构件的工厂化制作、运输吊装及现场施工效率,研发了新型凹槽拼缝连接叠合板. 通过对8个叠合板试件进行足尺受弯性能试验和数值模拟分析,对比研究整体现浇板、后浇带连接叠合板以及凹槽拼缝连接叠合板的开裂弯矩、极限承载力、裂缝开展及分布、变形延性和破坏特征等受弯性能. 结果表明,凹槽拼缝连接叠合板的受弯承载力略低于整体现浇板及后浇带连接叠合板. 相较于C型连接,D型连接凹槽拼缝叠合板的受弯性能更好. 随着凹槽长度的增加,凹槽拼缝连接叠合板的承载能力有显著提高. 建立的有限元模型数值模拟结果与试验结果吻合较好,可以较合理地模拟叠合板的受弯性能. 通过对影响叠合板D型凹槽拼缝连接受弯性能的参数分析,明确了叠合板凹槽拼缝连接的合理设计.

关键词: 叠合板凹槽拼缝连接受弯性能破坏特征    
Abstract:

A new composite slab with groove splicing joint was developed in order to improve the efficiency of factory production, transportation and lifting, as well as on-site construction of composite slab components. The flexural performance of cast-in-place slabs, composite slabs with post-cast strip and composite slabs with groove splicing joint was comparatively analyzed in terms of the cracking moment, flexural capacity, crack development and distribution, deformation ductility and failure characteristics through full-size flexural test and numerical simulation on 8 composite slab specimens. Results show that the flexural capacity of composite slabs with groove splicing joint is slightly lower than that of cast-in-place slabs and composite slabs with post-cast strip. The composite slabs using the D-type groove splicing joint have better flexural performance compared with the C-type connection joint. The flexural capacity of the composite slabs with groove splicing joint was significantly improved by increasing the length of the groove. The numerical simulation results of the established finite element model accorded well with the experimental results, which can reasonably simulate the flexural performance of composite slabs. The reasonable design of the composite slabs with groove splicing joint was clarified through the analysis of the parameters influencing the flexural performance of the composite slabs with D-type groove splicing joint.

Key words: composite slab    groove splicing joint    flexural performance    failure characteristic
收稿日期: 2022-06-29 出版日期: 2023-04-21
CLC:  TU 111  
基金资助: 浙江省重点研发计划资助项目(2018C03033-1);住房和城乡建设部科技资助项目(2021-k-052)
通讯作者: 张明山     E-mail: 904778842@qq.com;zhangms@zuadr.com
作者简介: 肖彤(1998—),女,硕士生,从事装配式建筑结构的研究. orcid.org/0000-0002-1565-001X. E-mail: 904778842@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
肖彤
张明山
李本悦
徐铨彪
龚顺风

引用本文:

肖彤,张明山,李本悦,徐铨彪,龚顺风. 叠合板板侧凹槽拼缝连接受弯性能试验研究[J]. 浙江大学学报(工学版), 2023, 57(4): 842-854.

Tong XIAO,Ming-shan ZHANG,Ben-yue LI,Quan-biao XU,Shun-feng GONG. Experimental study on flexural performance of composite slab with groove splicing joint. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 842-854.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.022        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/842

图 1  板试件设计详图
编号 试件类型 配筋 L/mm W/mm 钢筋连接方式 L1/mm
A 整体现浇 ?10 mm@200 mm 3 100 1 000
B 后浇带连接 ?10 mm@200 mm 3 100 1 000
C1 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 C型连接 100
C2 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 C型连接 200
C3 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 C型连接 300
D1 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 D型连接 100
D2 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 D型连接 200
D3 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 D型连接 300
表 1  板试件的几何尺寸和配筋
图 2  凹槽拼缝构造详图
图 3  钢筋的应力-应变曲线
图 4  叠合板试件受弯试验加载装置图
图 5  应变测点的布置
图 6  板试件的破坏形态
图 7  叠合板试件的裂缝分布图
图 8  试件的荷载-跨中挠度曲线
试件
编号
$M_{{\text{cr}}}^{\text{c}}$/
(kN·m)
$M_{{\text{cr}}}^{\text{e}}$/
(kN·m)
$M_{{\text{cr}}}^{\text{e}}$/ $M_{{\text{cr}}}^{\text{c}}$ $M_{\text{u}}^{\text{c}}$/
(kN·m)
$M_{\text{u}}^{\text{e}}$/
(kN·m)
$M_{\text{u}}^{\text{e}}$/ $M_{\text{u}}^{\text{c}}$ $f_{\text{u}}^{\text{e}}$/
mm
A 7.1 7.6 1.07 14.5 25.6 1.76 241.39
B 7.1 7.2 1.01 14.5 26.8 1.85 242.73
C1 7.2 4.8 0.67 12.8 11.2 0.87 26.49
C2 7.2 7.2 1.00 12.8 21.2 1.65 75.02
C3 7.2 7.2 1.00 12.8 21.6 1.69 80.46
D1 7.2 6.0 0.83 12.8 12.0 0.94 32.74
D2 7.2 8.0 1.11 12.8 21.6 1.69 99.36
D3 7.2 8.4 1.17 12.8 23.2 1.81 119.56
表 2  试件受弯承载力的试验结果
图 9  预制板的荷载-拼缝裂缝宽度变化曲线
图 10  钢筋的荷载-应变曲线
图 11  混凝土的单轴受压应力-应变曲线
图 12  混凝土的单轴受拉应力-应变曲线
图 13  钢筋的受拉应力-应变曲线
图 14  叠合板试件的有限元模型
钢筋 Es/GPa fy/MPa εy k1 k2 k3
?10 mm 197.6 430.1 0.0022 63.6 89.5 1.59
表 3  钢筋模型的参数
图 15  试件荷载-跨中挠度曲线的对比
试件规格 $M_{{\text{cr}}}^{\text{n}}$/(kN·m) $M_{{\text{cr}}}^{\text{e}}$/(kN·m) $M_{{\text{cr}}}^{\text{e}}$/ $M_{{\text{cr}}}^{\text{n}}$ $M_{\text{u}}^{\text{n}}$/(kN·m) $M_{\text{u}}^{\text{e}}$/(kN·m) $M_{\text{u}}^{\text{e}}$/ $M_{\text{u}}^{\text{n}}$ $f_{\text{u}}^{\text{n}}$/mm $f_{\text{u}}^{\text{e}}$/mm $f_{\text{u}}^{\text{e}}$/ $f_{\text{u}}^{\text{n}}$
A 8.0 7.6 0.95 26.4 25.6 0.97 248.36 241.39 0.97
B 7.6 7.2 0.95 26.4 26.8 1.02 264.53 242.73 0.92
C1 4.4 4.8 1.09 10.5 11.2 1.07 26.81 26.49 0.98
C2 6.9 7.2 1.05 20.8 21.2 1.02 77.05 75.02 0.97
C3 6.9 7.2 1.05 21.6 21.6 1.00 80.36 80.46 1.00
D1 6.0 6.0 1.00 11.2 12.0 1.07 30.33 32.74 1.08
D2 7.6 8.0 1.05 20.6 21.6 1.05 98.18 99.36 1.01
D3 7.6 8.4 1.10 22.3 23.2 1.04 120.12 119.56 0.99
表 4  叠合板试件的数值模拟结果
图 16  试件混凝土的裂缝分布
图 17  板底钢筋的Mises应力云图
图 18  不同连接钢筋配筋率叠合板的荷载-跨中挠度曲线
图 19  不同叠合层厚度的叠合板荷载-跨中挠度曲线
图 20  不同凹槽深度的叠合板荷载-跨中挠度曲线
1 赵顺波. 混凝土叠合结构设计原理与应用[M]. 北京: 中国水利水电出版社, 2001.
2 吴方伯, 刘彪, 李钧, 等 新型叠合板拼缝构造措施的试验研究及有限元分析[J]. 工业建筑, 2015, 45 (2): 50- 56
WU Fang-bo, LIU Biao, LI Jun, et al Experimental study and finite element analysis of the new type of composite slab joint structure measures[J]. Industrial Construction, 2015, 45 (2): 50- 56
doi: 10.13204/j.gyjz201502012
3 徐天爽, 徐有邻 双向叠合板拼缝传力性能的试验研究[J]. 建筑科学, 2003, (6): 11- 14
XU Tian-shuang, XU You-lin Experimental study on joint force transmission performance of two-way composite plate[J]. Building Science, 2003, (6): 11- 14
doi: 10.3969/j.issn.1002-8528.2003.06.004
4 丁克伟, 陈东, 刘运林, 等 一种新型拼缝结构的叠合板受力机理及试验研究[J]. 土木工程学报, 2015, 48 (10): 64- 69
DING Ke-wei, CHEN Dong, LIU Yun-lin, et al Mechanical mechanism and experimental study of composite plate with a new type of joint structure[J]. China Civil Engineering Journal, 2015, 48 (10): 64- 69
doi: 10.15951/j.tmgcxb.2015.10.009
5 崔士起, 刘传卿, 刘文政, 等 分离式接缝叠合板垂直接缝方向抗弯刚度的试验及计算方法研究[J]. 建筑结构学报, 2018, 39 (9): 75- 84
CUI Shi-qi, LIU Chuan-qing, LIU Wen-zheng, et al Research on test and calculation method of bending stiffness of vertical joint of separated joint composite plate[J]. Journal of Building Structures, 2018, 39 (9): 75- 84
doi: 10.14006/j.jzjgxb.2018.09.009
6 余泳涛, 赵勇, 高志强 单缝密拼钢筋混凝土叠合板受弯性能试验研究[J]. 建筑结构学报, 2019, 40 (4): 29- 37
YU Yong-tao, ZHAO Yong, GAO Zhi-qiang Experimental study on flexural behavior of single joint close fitting reinforced concrete composite slab[J]. Journal of Building Structures, 2019, 40 (4): 29- 37
doi: 10.14006/j.jzjgxb.2019.04.003
7 STEHLE J, KANELLOPOULOS A, KARIHALOO B L Performance of joints in reinforced concrete slabs for two-way spanning action[J]. Proceedings of the ICE-Structures and Buildings, 2011, 164 (3): 197- 209
8 装配式混凝土结构技术规程: JGJ 1—2014 [S]. 北京: 中国建筑工业出版社, 2014.
9 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2010.
10 混凝土结构试验方法标准: GB/T 50152—2012 [S]. 北京: 中国建筑工业出版社, 2012.
11 VELASCO R V. Self-consolidating concretes reinforced with high volumetrics fractions of steel fibers: rheological, physics, mechanics and thermal properties [D]. Rio de Janeiro: Federal University of Rio de Janeiro, 2008.
12 WEE T H, CHIN M S, MANSUR M A Stress-strain relationship of high-strength concrete in compression[J]. Journal of Materials in Civil Engineering, 1996, 8 (2): 70- 76
doi: 10.1061/(ASCE)0899-1561(1996)8:2(70)
13 ESMAEILY A, XIAO Y Behavior of reinforced concrete columns under variable axial loads: analysis[J]. ACI Structural Journal, 2005, 102 (5): 736- 744
14 AN C, CASTELLO X, DUAN M L, et al Ultimate strength behavior of sandwich pipes filled with steel fiber reinforced concrete[J]. Ocean Engineering, 2012, 55: 125- 135
doi: 10.1016/j.oceaneng.2012.07.033
15 GENIKOMSOU A S, POLAK M A Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS[J]. Engineering Structures, 2015, 98: 38- 48
doi: 10.1016/j.engstruct.2015.04.016
[1] 罗斌,黄炜,马相,李斌,周文彩,任杉杉. 采用发泡聚苯乙烯保温砂浆芯材的夹芯叠合板受弯性能[J]. 浙江大学学报(工学版), 2019, 53(11): 2185-2196.
[2] 赵增辉, 王渭明, 高鑫, 严纪兴. 弱胶结泥质软岩的三向压缩损伤特性[J]. 浙江大学学报(工学版), 2014, 48(8): 1399-1405.
[3] 孙晓燕 王海龙 黄承逵. 超载运营对服役桥梁受弯性能影响的试验研究[J]. J4, 2008, 42(1): 152-156.