Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 833-841    DOI: 10.3785/j.issn.1008-973X.2023.04.021
交通工程、土木工程     
煤矸石桩-土工格室复合路基承载特性
邓友生1,3(),冯爱林1,3,杨敏2,杨彪1,3,姚志刚1,3,李龙1,3
1. 西安科技大学 建筑与土木工程学院,陕西 西安 710054
2. 同济大学 土木工程学院,上海 200092
3. 西安科技大学 桩承结构研究中心,陕西 西安 710054
Bearing characteristics of coal gangue pile-geocell composite subgrade
You-sheng DENG1,3(),Ai-lin FENG1,3,Min YANG2,Biao YANG1,3,Zhi-gang YAO1,3,Long LI1,3
1. College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2. College of Civil Engineering, Tongji University, Shanghai 200092, China
3. Pile-supported Structures Research and Test Center, Xi’an University of Science and Technology, Xi’an 710054, China
 全文: PDF(2314 KB)   HTML
摘要:

为了研究煤矸石桩-土工格室复合路基的承载性能,以煤矸石桩、土工格室及格栅分别作为竖向、水平向加筋体,开展静载试验,分析土工格室和格栅拉伸应力、桩体轴向应力以及桩顶与桩间土压力的变化规律. 研究结果表明:当施加到第8级荷载时,相较于土工格栅,土工格室上的拉应力增大67.93%,格室组中心桩与边桩中性点应力分别增大78.22%、30.95%,中性点对应截面位于桩体中部距桩顶约50 cm处;加筋垫层下方格室组的桩土应力比与格栅组相比,路基中部增大13.68%,路基边缘部分增大12.40%~13.49%,整体增大13.19%. 煤矸石桩-土工格室复合结构能够有效地将荷载由桩身传递至基底;土工格室加筋垫层均匀地将荷载横向传递至加筋体,削弱桩土间的土拱效应,土工格室与垫层构成的柔性筏板效应更突显.

关键词: 土工格室煤矸石桩承载机理柔性筏板效应    
Abstract:

The coal gangue pile, geocell and grid were used as vertical and horizontal reinforcements respectively for static load test in order to analyze the bearing capacity of coal gangue pile-geocell composite subgrade. The variation rules of tensile stress of geocell and grid, axial stress of pile and soil pressure between pile top and pile were analyzed. Results show that when the eighth load is applied, the tensile stress on the geocell increases by 67.93% compared with the geogrid, and the stress at the neutral point of the center pile and the side pile of the cell group increases by 78.22% and 30.95% respectively. The corresponding section of the neutral point was located in the middle of the pile about 50 cm from the top of the pile. Compared with the grid group, the pile-soil stress ratio of the cell group under the reinforced cushion was increased by 13.68% in the middle of the subgrade, 12.40%-13.49% in the edge of the subgrade, and 13.19% in the whole. The coal gangue pile-geocell composite structure can effectively transfer the load from the pile body to the base. The geocell reinforced cushion uniformly laterally transmits the load to the reinforced body, weakening the soil arching effect between piles and soil, and the flexible raft effect composed of geocell and cushion is more prominent.

Key words: geocell    coal gangue pile    bearing mechanism    flexible raft effect
收稿日期: 2022-04-24 出版日期: 2023-04-21
CLC:  TU 472  
基金资助: 国家自然科学基金资助项目(51878554);陕西省自然科学基础研究计划重点资助项目(2018JZ5012)
作者简介: 邓友生(1969—),男,教授,博导,从事基础工程及工程结构防灾减灾工程的研究. orcid.org/0000-0002-9891-2547. E-mail: dengys2009@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邓友生
冯爱林
杨敏
杨彪
姚志刚
李龙

引用本文:

邓友生,冯爱林,杨敏,杨彪,姚志刚,李龙. 煤矸石桩-土工格室复合路基承载特性[J]. 浙江大学学报(工学版), 2023, 57(4): 833-841.

You-sheng DENG,Ai-lin FENG,Min YANG,Biao YANG,Zhi-gang YAO,Long LI. Bearing characteristics of coal gangue pile-geocell composite subgrade. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 833-841.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.021        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/833

图 1  路基模型
图 2  路基填筑
图 3  模型试验的材料
材料 型号 ρ/(kg·m?3) E/MPa G/MPa Rm/MPa e/%
土工格室 DTGS5 11 2750 2.36 23 ≤4.4
土工格栅 TGSG15-15 11 2100 2.36 14.5 ≤12.2
表 1  土工格栅及格室的参数
图 4  桩体测点的布置
图 5  应变片及土压力盒的布置
图 6  加筋体测点的布置
图 7  加载与测量示意图
图 8  土工格室应力
图 9  土工格栅应力
图 10  格室组的桩体应力
图 11  格栅组的桩体应力
图 12  第1层的桩土应力比
图 13  第2层应力比值
1 叶阳升, 蔡德钩, 张千里, 等 高速铁路路基结构设计方法现状与发展趋势[J]. 中国铁道科学, 2021, 42 (3): 1- 12
YE Yang-sheng, CAI De-gou, ZHANG Qian-li, et al Current situation and development trend of subgrade structure design method for high-speed railway[J]. China Railway Science, 2021, 42 (3): 1- 12
doi: 10.3969/j.issn.1001-4632.2021.03.01
2 胡一峰, 李怒放. 高速铁路无砟轨道路基设计原理[M]. 北京: 中国铁道出版社, 2010: 1-2.
3 刘钢, 罗强, 张良, 等 基于累积变形演化状态控制的高速铁路基床结构设计计算方法[J]. 中国科学: 技术科学, 2014, 44 (7): 744- 754
LIU Gang, LUO Qiang, ZHANG Liang, et al Computational methods of high-speed railway subgrade structure design based on cumulative deformation evolution state control[J]. Scientia Sinica (Technologica), 2014, 44 (7): 744- 754
doi: 10.1360/N092014-00093
4 马缤辉. 土工格室+碎石桩双向增强复合地基承载特性及沉降计算研究[D]. 长沙: 湖南大学, 2012: 7-9.
MA Bin-hui. The research on bearing characteristic and settlement of composite foundation bidirectionally reinforced by stone columns and geocell [D]. Changasha: Hunan University, 2012: 7-9.
5 李运成, 彭振斌, 何杰 夯实水泥土桩-网复合地基工作性状对比试验研究[J]. 中南大学学报: 自然科学版, 2014, 45 (10): 3531- 3535
LI Yun-cheng, PENG Zhen-bin, HE Jie Comparative experimental study on working behavior of rammed cement-soil pile-net composite foundation[J]. Journal of Central South University: Science and Technology, 2014, 45 (10): 3531- 3535
6 陈盛原, 叶华洋, 张伟锋, 等 路堤荷载作用下柔性桩复合地基的沉降分析[J]. 岩土力学, 2020, 41 (9): 3077- 3086
CHEN Sheng-yuan, YE Hua-yang, ZHANG Wei-feng, et al Settlement analysis of flexible pile composite foundation under embankment load[J]. Rock and Soil Mechanics, 2020, 41 (9): 3077- 3086
doi: 10.16285/j.rsm.2019.1902
7 李天宝, 许家培, 刘开富 循环荷载下刚性桩对桩承加筋垫层复合地基承载性状影响[J]. 工业建筑, 2021, 51 (11): 137- 142
LI Tian-bao, XU Jia-pei, LIU Kai-fu Rigid piles effect research on the bearing behavior of composite foundation with geogrid-reinforced cushion supported by piles under cyclic loading[J]. Industrial Construction, 2021, 51 (11): 137- 142
doi: 10.13204/j.gyjzg20112307
8 汪海年, 张然, 周俊, 等 土工格室加筋碎石基层变形机理的数值模拟[J]. 中南大学学报: 自然科学版, 2015, 46 (12): 4640- 4646
WANG Hai-nian, ZHANG Ran, ZHOU Jun, et al Numerical simulation of deformation mechanism of geocell reinforced gravel base course[J]. Journal of Central South University: Science and Technology, 2015, 46 (12): 4640- 4646
9 PHAM T A, DIAS D 3D numerical study of the performance of geosynthetic-reinforced and pile-supported embankments[J]. Soils and Foundations, 2021, 61 (5): 1319- 1342
doi: 10.1016/j.sandf.2021.07.002
10 VAN EEKELEN S J M, BEZUIJEN A, LODDER H J, et al Model experiments on piled embankments. Part I[J]. Geotextiles and Geomembranes, 2012, 32: 69- 81
doi: 10.1016/j.geotexmem.2011.11.002
11 赵明华, 郑玥, 刘猛, 等 考虑纵横耦合变形的土工格室加筋体变形分析[J]. 湖南大学学报: 自然科学版, 2019, 46 (9): 89- 99
ZHAO Ming-hua, ZHENG Yue, LIU Meng, et al Deformation analysis of geocell-reinforcement considering vertical-horizontal coupling distortion[J]. Journal of Hunan University: Natural Sciences, 2019, 46 (9): 89- 99
12 赵明华, 陈大兴, 刘猛, 等 考虑土拱效应影响的路堤荷载下土工格室加筋体变形分析[J]. 岩土工程学报, 2020, 42 (4): 601- 609
ZHAO Ming-hua, CHEN Da-xing, LIU Meng, et al Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (4): 601- 609
13 YANG Cheng-zhong, NI Kai, WANG Shu-fang Analysis of the stress characteristics of CFG pile composite foundation under irregularity condition[J]. Civil Engineering Journal, 2017, 2017 (2): 154- 166
14 PATEL R M, JAYALEKSHMI B R, SHIVASHANKAR R Stress distribution in basal geogrid reinforced pile-supported embankments under seismic loads[J]. Transportation Infrastructure Geotechnology, 2021, 8 (4): 516- 541
doi: 10.1007/s40515-021-00148-9
15 VIBHOOSHA M P, BHASI A, NAYAK S A review on the design, applications and numerical modeling of geocell reinforced soil[J]. Geotechnical and Geological Engineering, 2021, 39 (3): 4035- 4057
16 徐超, 宋世彤 桩承式加筋路堤土拱效应的缩尺模型试验研究[J]. 岩石力学与工程学报, 2015, 34 (Supple.2): 4343- 4350
XU Chao, SONG Shi-tong Scaled model tests of soil arching effect in geosynthetic reinforced and pile supported embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Supple.2): 4343- 4350
doi: 10.13722/j.cnki.jrme.2014.1167
17 徐超, 林潇, 沈盼盼 桩承式加筋路堤张力膜效应模型试验研究[J]. 岩土力学, 2016, 37 (7): 1825- 1831
XU Chao, LIN Xiao, SHEN Pan-pan Model tests of tensile membrane effect of geosynthetic-reinforced piled embankments[J]. Rock and Soil Mechanics, 2016, 37 (7): 1825- 1831
doi: 10.16285/j.rsm.2016.07.001
18 芮瑞, 万亿, 陈成, 等 加筋对桩承式路堤变形模式与土拱效应影响试验[J]. 中国公路学报, 2020, 33 (1): 41- 50
RUI Rui, WAN Yi, CHEN Cheng, et al Experimental investigation on influences of geosynthetic reinforcement on deformation pattern and soil arching in piled embankments[J]. China Journal of Highway and Transport, 2020, 33 (1): 41- 50
doi: 10.3969/j.issn.1001-7372.2020.01.004
19 ZHOU Wan-huan, LAO Jun-yuan, HAUNG Yi-sheng, et al Group effect on soil arching in geogrid-reinforced pile-supported embankments[J]. Japanese Geotechnical Society Special Publication, 2017, 5 (2): 130- 134
doi: 10.3208/jgssp.v05.035
20 LEE T, LEE S, LEE I W, et al Lessons from full-scale experiments on piled embankments with different geosynthetic reinforcements[J]. KSCE Journal of Civil Engineering, 2021, 25 (2): 442- 450
doi: 10.1007/s12205-020-0625-x
21 詹鹏. 煤矸石型CFG模型桩的竖向极限承载力试验研究[D]. 延吉: 延边大学, 2015: 54-55.
ZHAN Peng. Experimental study on vertical ultimate bearing capacity of coal gangue CFG model pile [D]. Yanji: Yanbian University, 2015: 54-55.
22 HUANG Yan-lin, ZHOU An Study on mechanical properties of PET fiber-reinforced coal gangue fine aggregate concrete[J]. Geofluids, 2021, 6627447
23 VERIAN K P, ASHRAF W, CAO Yi-zheng Properties of recycled concrete aggregate and their influence in new concrete production[J]. Resources, Conservation and Recycling, 2018, 2 (133): 30- 49
24 铁路路基设计规范: TB1001-2016 [S]. 北京: 中国铁道出版社, 2017.
[1] 余松霖,柯瀚,詹良通,孟涛,陈云敏,杨策. 工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析[J]. 浙江大学学报(工学版), 2020, 54(12): 2364-2376.
[2] 郑凌逶, 谢新宇, 谢康和, 李金柱, 刘亦民. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073.
[3] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[4] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[5] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[6] 凌道盛,石吉森,张如如,王云岗. Hansbo类有限单元法的非连续分片试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2142-2150.
[7] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.
[8] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[9] 李新亮,李素贞,申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[10] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[11] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
[12] 李雪刚,徐日庆,畅帅,廖斌,王兴陈. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 2014, 48(5): 843-849.
[13] 余钊圣, 王宇, 邵雪明, 吴腾虎. 中性悬浮大颗粒对湍槽流影响的数值研究[J]. J4, 2013, 47(1): 109-115.
[14] 林巍, 楼文娟, 申屠团兵, 黄铭枫. 高层建筑脉动风压的非高斯峰值因子方法[J]. J4, 2012, 46(4): 691-697.
[15] 薛文, 金伟良, 横田弘. 养护条件与暴露环境对氯离子传输的耦合作用[J]. J4, 2011, 45(8): 1416-1422.