Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 657-665    DOI: 10.3785/j.issn.1008-973X.2023.04.002
机械与能源工程     
基于超声引导的微细Z-pin植入系统
费少华(),丁会明*(),汪海晋,李江雄
浙江大学 浙江省先进制造技术重点实验室,浙江 杭州 310027
Ultrasound-guided fine Z-pin insertion system
Shao-hua FEI(),Hui-ming DING*(),Hai-jin WANG,Jiang-xiong LI
Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
 全文: PDF(4249 KB)   HTML
摘要:

为了减少传统Z-pin增强工艺对复合材料层合板造成的面内性能损伤,提出超声引导直径为0.11 mm的微细Z-pin自动植入工艺. 根据超声引导微细Z-pin植入原理,设计开发自动植入系统. 根据Z-pin植入力特性,综合夹心式压电换能器的设计理论,设计纵振型超声振子,利用有限元仿真软件对超声振子进行模态及谐波响应分析,实测超声振子阻抗与振幅特性,得到谐振频率为70.062 4 kHz,振幅为2.578 μm,与仿真结果一致. 搭建超声引导植入系统,对微细Z-pin增强复合材料层合板进行面内拉伸、压缩性能及层间断裂韧性测试. 结果表明,对于体积分数为0.2%、直径为0.11 mm的微细碳纤维Z-pin增强复合材料层合板,拉伸、压缩强度分别下降1.6%和3.4%,Ⅰ型层间断裂韧性可以提升14.4倍.

关键词: 微细Z-pin复合材料层合板超声振动面内损伤层间断裂韧性    
Abstract:

An ultrasound-guided fine Z-pin (with a diameter of 0.11 mm) automatic insertion system was proposed to reduce the in-plane damage of traditional Z-pinned composite laminates. The automatic insertion system was designed and developed by the ultrasound-guided fine Z-pin insertion principle. A longitudinal ultrasonic vibrator was designed and analyzed according to the force characteristics of Z-pin insertion process and the design theory of sandwich piezoelectric transducer. The modal and harmonic response of the vibrator was analyzed by using finite element simulation. Impedance analysis and amplitude measurement of the ultrasonic vibrator was conducted. Results showed that the resonant frequency was 70.062 4 kHz and the actual vibration amplitude was 2.578 μm, which accorded with the simulation results. The ultrasound-guided insertion system was constructed. The in-plane tensile, compressive properties and interlaminar fracture toughness of the fine carbon Z-pinned composite laminates were tested. Results show that the in-plane strength reduction is only 1.6% in tension and 3.4% in compression respectively for unidirectional fiber/epoxy laminates reinforced by carbon Z-pins whose volume fraction is 0.2% and diameter is 0.11 mm. The Mode-I fracture toughness can be improved by 14.4 times.

Key words: fine Z-pin    composite laminate    ultrasonic vibration    in-plane damage    interlaminar fracture toughness
收稿日期: 2022-04-13 出版日期: 2023-04-21
CLC:  TB 332  
基金资助: 国家自然科学基金资助项目(51975520)
通讯作者: 丁会明     E-mail: sh_fei@zju.edu.cn;pangding@zju.edu.cn
作者简介: 费少华(1986—),男, 博士生, 从事复合材料三维增强技术的研究. orcid.org/0000-0002-2045-8831. E-mail: sh_fei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
费少华
丁会明
汪海晋
李江雄

引用本文:

费少华,丁会明,汪海晋,李江雄. 基于超声引导的微细Z-pin植入系统[J]. 浙江大学学报(工学版), 2023, 57(4): 657-665.

Shao-hua FEI,Hui-ming DING,Hai-jin WANG,Jiang-xiong LI. Ultrasound-guided fine Z-pin insertion system. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 657-665.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.002        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/657

图 1  超声引导微细Z-pin植入原理[22]
图 2  金属Z-pin植入预浸料的力-位移曲线[23]
图 3  超声引导微细Z-pin自动植入单元
图 4  超声引导微细Z-pin自动植入过程
图 5  夹心式压电换能器的结构
图 6  夹心式压电换能器的应力与振动速度分布
换能器部件 材料 $ \rho $/(kg·mm?3) v/(m·s?1) E/GPa $ \upsilon $
压电陶瓷 PZT8 7 600 3 075 71.9 0.30
后盖板 TC4钛合金 4 500 4 945 110.0 0.34
螺杆 TC4钛合金 4 500 4 945 110.0 0.34
电极片 C5191磷铜片 8 900 3 717 123.0 0.34
表 1  换能器的材料属性
图 7  超声振子的结构简图及关键尺寸
图 8  超声振子的三维模型
图 9  超声振子的位移云图
图 10  超声振子的谐波响应分析结果
图 11  超声振子的最终设计结果
图 12  超声振子的频率振幅测试平台
图 13  超声振子的阻抗特性
图 14  超声振子的振幅测试结果
图 15  超声引导微细Z-pin植入试验台
图 16  微细Z-pin阵列
图 17  超声引导植入力特性
图 18  样件制备及力学性能的测试过程
样本 TM/GPa TS/MPa CM/GPa CS/MPa Pmax/N GⅠc/(J·mm?2
SC 120.4 ± 2.6 2341.5 ± 60.9 118.2 ± 6.4 989.2 ± 65.3 66.1 ± 2.2 304.1 ± 20.7
SR2 121.3 ± 4.0 2304.6 ± 94.5 116.4 ± 6.1 955.6 ± 48.7 294.4 ± 22.9 4691.6 ± 394.1
提升比例 +0.7% ?1.6% ?1.5% ?3.4% +345.4% +1442.8%
表 2  微细Z-pin增强复合材料的力学性能
1 GE L, LI H, ZHANG Y, et al Multiscale viscoelastic behavior of 3D braided composites with pore defects[J]. Composites Science and Technology, 2022, 217: 109114
doi: 10.1016/j.compscitech.2021.109114
2 TAPULLIMA J, KIM C H, CHOI J H Analysis and experiment on DCB specimen using I-fiber stitching process[J]. Composite Structures, 2019, 220: 521- 528
doi: 10.1016/j.compstruct.2019.04.020
3 PINGKARAWAT K, MOURITZ A P Improving the mode-I delamination fatigue resistance of composites using z-pins[J]. Composites Science and Technology, 2014, 92: 70- 76
doi: 10.1016/j.compscitech.2013.12.009
4 DAI S C, YAN W, LIU H Y, et al Experimental study on z-pin bridging law by pullout test[J]. Composites Science and Technology, 2004, 64: 2451- 2457
doi: 10.1016/j.compscitech.2004.04.005
5 MOURITZ A P Review of z-pinned composite laminates[J]. Composites Part A, 2007, 38: 2383- 2397
doi: 10.1016/j.compositesa.2007.08.016
6 MOURITZ A P Review of z-pinned laminates and sandwich composites[J]. Composites Part A, 2020, 139: 106128
doi: 10.1016/j.compositesa.2020.106128
7 WARZOK F, ALLEGRI G, GUDE M, et al Experimental study of Z-pin fatigue; understanding of mode I and II coupon behavior[J]. Composites Part A, 2019, 127: 105615
doi: 10.1016/j.compositesa.2019.105615
8 RAVINDRANA A R, LADANIA R B, WANG C H, et al Hierarchical mode I and mode II interlaminar toughening of Z-pinned composites using 1D and 2D carbon nanofillers[J]. Composites Part A, 2019, 124: 105470
doi: 10.1016/j.compositesa.2019.05.038
9 M'MEMBE B, YASAEE M, HALLETT S R, et al Effective use of metallic Z-pins for composites’ through-thickness reinforcement[J]. Composites Science and Technology, 2019, 175: 77- 84
doi: 10.1016/j.compscitech.2019.02.024
10 HOFFMANN J, SCHARR G Mechanical properties of composite laminates reinforced with rectangular z-pins in monotonic and cyclic tension[J]. Composites Part A, 2018, 109: 163- 170
doi: 10.1016/j.compositesa.2018.03.004
11 CHANG P, MOURITZ A P, COX B N Properties and failure mechanisms of pinned composite lap joints in monotonic and cyclic tension[J]. Composites Part A, 2006, 66: 2163- 2176
12 MOURITZ A P, CHANG P Tension fatigue of fibre-dominated and matrix-dominated laminates reinforced with z-pins[J]. International Journal of Fatigue, 2010, 32 (4): 650- 658
doi: 10.1016/j.ijfatigue.2009.09.001
13 COX B N, DADKHAH M S, INMAN R V, et al Mechanisms of compressive failure in 3D composites[J]. Acta Metallurgica et Materialia, 1992, 40 (12): 3285- 3298
doi: 10.1016/0956-7151(92)90042-D
14 FARLEY G L, DICKINSON L C Removal of surface loop from stitched composites can improve compressive and composite-after-impact strengths[J]. Journal of Reinforced Plastics and Composites, 1992, 11: 633- 642
doi: 10.1177/073168449201100604
15 MOURITZ A P Compression properties of z-pinned composite laminates[J]. Composites Science and Technology, 2007, 67 (15/16): 3110- 3120
16 ISA M D, FEIH S, MOURITZ A P Compression fatigue properties of z-pinned quasi-isotropic carbon/epoxy laminate with barely visible impact damage[J]. Composite Structures, 2011, 93 (9): 2269- 2276
doi: 10.1016/j.compstruct.2011.03.015
17 HOFFMANN J, SCHARR G Compression properties of composite laminates reinforced with rectangular z-pins[J]. Composites Science and Technology, 2018, 167: 463- 469
doi: 10.1016/j.compscitech.2018.08.042
18 GONG B, OUYANG W, NARTEY M, et al Minimizing the in-plane damage of Z-pinned composite laminates via a pre-hole pin insertion process[J]. Composites Science and Technology, 2020, 200: 108413
doi: 10.1016/j.compscitech.2020.108413
19 CARTIE D R, LAFFAILLE J M, PARTRIDGE I K, et al Fatigue delamination behaviour of unidirectional carbon fibre/epoxy laminates reinforced by Z-fiber pinning[J]. Engineering Fracture Mechanics, 2009, 76: 2834- 2845
doi: 10.1016/j.engfracmech.2009.07.018
20 ZHANG A Y, LIU H Y, MOURITZ A P, et al Experimental study and computer simulation of z-pin reinforcement under cycle fatigue[J]. Composites Part A, 2008, 39: 406- 414
doi: 10.1016/j.compositesa.2007.09.006
21 PEGORIN F, PINGKARAWAT K, DAYNES S, et al Mode II interlaminar fatigue properties of z-pinned carbon fibre reinforced epoxy composites[J]. Composites Part A, 2014, 67: 8- 15
doi: 10.1016/j.compositesa.2014.08.008
22 FEI S, WANG W, WANG H, et al Effect of Ø0.11 mm Z-pinning on the properties of composite laminates via an ultrasound guided insertion process[J]. Composites Science and Technology, 2021, 213: 108906
doi: 10.1016/j.compscitech.2021.108906
23 JI G, CHENG L, FEI S, et al A novel model of Z-pin insertion in prepreg based on fracture mechanics[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2021, 4: 1- 12
24 曹凤国. 超声加工[M]. 北京: 化学工业出版社, 2014: 70-75.
25 李婧. 基于PZT-8纵向振动功率超声振子机电特性研究[D]. 太原: 中北大学, 2021: 73-74.
LI Jing. Mechanical and electrical characteristics of power ultrasonic vibrator based on PZT-8 longitudinal vibration [D]. Taiyuan: North University of China, 2021: 73-74.
[1] 姚喆赫,张操棋,宋其伟,卢习江,孔建强,姚建华. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版), 2021, 55(5): 887-895.
[2] 鹿存跃,魏燕定,郭吉丰,等. 双振子自走型直线超声电机的研究[J]. J4, 2009, 43(8): 1469-1472.