Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 643-656    DOI: 10.3785/j.issn.1008-973X.2023.04.001
机械与能源工程     
生物墨水挤出打印成型精度评价方法概述
林泽宁(),蒋涛*(),尚建忠,杨云,洪阳,罗自荣
国防科技大学 智能科学学院,湖南 长沙 410073
Overview of methods for evaluating accuracy of bioink extrusion bioprinting
Ze-ning LIN(),Tao JIANG*(),Jian-zhong SHANG,Yun YANG,Yang HONG,Zi-rong LUO
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
 全文: PDF(2222 KB)   HTML
摘要:

为了推动挤压生物3D打印结构精度的提升,介绍了以水凝胶为代表的生物墨水挤压打印原理及相关数学模型. 针对打印精度的影响因素,从结构设计、生物墨水特性、打印设备及工艺参数三方面进行系统分析,总结各参数对打印精度的作用. 按照定量评价方法所涉及参数的维度归纳总结并分析不同方法的优缺点,从仿真预测、克服材料力学行为、辅助打印等方面提出研究思路,为后续挤压生物3D打印技术的进一步发展提供参考.

关键词: 挤压生物3D打印打印精度结构设计生物墨水特性工艺参数定量打印评价方法    
Abstract:

The principle of extrusion-based bioprinting with bioinks represented by hydrogels and the related mathematical model were introduced in order to improve the accuracy of extrusion-based 3D bioprinting structure. The factors affecting the printing accuracy were systematically analyzed in terms of structural design, bioink properties, bioprinting equipment and technological parameters, and the role of each parameter on the printing accuracy was summarized. The advantages and disadvantages of different methods were analyzed based on the dimensions of the parameters involved in the quantitative evaluation methods. Research ideas from simulation prediction, overcoming material mechanical behaviors and assisted printing were proposed, which provided references for the further development of the extrusion-based 3D bioprinting technology.

Key words: extrusion-based 3D bioprinting    printing accuracy    structure design    bioink property    process parameter    quantitative printing evaluation method
收稿日期: 2022-08-28 出版日期: 2023-04-21
CLC:  TH 164  
基金资助: 国家自然科学基金资助项目(52105039);湖南省研究生科研创新资助项目(CX20220027);国防科技大学科研计划资助项目(ZK-19);国防科技大学智能科学学院青年骨干教师资助项目(4142Z6G2)
通讯作者: 蒋涛     E-mail: linzening@nudt.edu.cn;jiangtao@nudt.edu.cn
作者简介: 林泽宁(1997—),男,博士生,从事生物3D打印与生物机器人的研究. orcid.org/0000-0002-5827-0594. E-mail: linzening@nudt.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林泽宁
蒋涛
尚建忠
杨云
洪阳
罗自荣

引用本文:

林泽宁,蒋涛,尚建忠,杨云,洪阳,罗自荣. 生物墨水挤出打印成型精度评价方法概述[J]. 浙江大学学报(工学版), 2023, 57(4): 643-656.

Ze-ning LIN,Tao JIANG,Jian-zhong SHANG,Yun YANG,Yang HONG,Zi-rong LUO. Overview of methods for evaluating accuracy of bioink extrusion bioprinting. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 643-656.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.001        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/643

图 1  挤压生物3D打印过程
图 2  3种挤出生物3D打印技术
工艺参数 具体参数 效果
材料流变特性 黏度、屈服应力等 剪切速率的增加使黏度降低,表明材料具有剪切变稀行为;屈服应力可以抵抗重力或表面张力的变形.
模型设计 结构尺寸或形状 结构尺寸过于精细或形状复杂,使打印难度增加,对材料、设备的要求更高.
挤压生物打印设备及打印参数 XYZ轴精度 影响喷嘴的实际移动距离.
温度控制 影响温敏材料的流变特性.
喷嘴长度、内径等 同规格圆锥形喷嘴打印微丝的均匀性比圆柱形好,内径小的喷嘴打印出来的微丝更细.
喷嘴移动速度 速度过慢可能导致材料堆积,增加喷嘴速度可在一定程度提高微丝均匀性.
挤出速度 材料挤出速度快或慢可能使微丝过粗或难以挤出.
层厚 增加层厚将减少打印时间,但可能增加结构的粗糙程度.
微丝走向 45°与90°走向结构稳定性不同.
喷嘴尖端距离基底高度 打印高度过高时,对直角的打印容易出现滞后现象.
基底材料 较高刚度的基底难以维持一些低黏度材料或任意形状的结构(例如下窄上宽结构)
表 1  挤压生物3D打印参数及其效果
图 3  生物墨水的流变特性
图 4  不同的打印参数测试
图 5  实体模型结构设计所需考虑的因素
图 6  悬浮打印的三维结构
图 7  流体仿真与机器学习的测试结果
图 8  一维定量评价方法
图 9  基于面积变化的评价方法
图 10  塌陷度二维评价方法
维度 具体评价方法 优点 缺点 评价标准
一维 式(6) 直接判断微丝宽度是否符合理论宽度 未考虑微丝不同位置宽度存在的误差 精细度
式(7) 考虑微丝不同位置、宽度相对误差 未涉及微丝的精细程度,比如宽度 粗糙度
式(8) 同时考虑塌陷度与形状保真度 测量过程中最大弧度与微丝的宽度测量可能
存在较大的人工误差
塌陷度与粗糙度
式(9) 用简单可行的方法判断塌陷程度 材料耗费较多,且未考虑粗糙度 塌陷度
二维 式(10) 综合考虑微丝宽度与塌陷情况 未考虑微丝的粗糙程度且消耗较多的材料 塌陷度与精细度
式(11) 综合考虑微丝宽度与塌陷情况 未考虑微丝的粗糙程度且消耗较多的材料 塌陷度与精细度
式(12) 综合考虑微丝2个方向的粗糙度与宽度 在可能存在宽度过大但均匀、宽度接近理论宽度但粗糙
这2种情况下得到的P相等
粗糙度与精细度
式(13) 仅使用2层微丝即可判断塌陷程度 实际对角线位置的判断可能误差大 塌陷度
式(14) 仅使用1条微丝对塌陷程度进行判断 测量实际面积困难较大,易出现误差 塌陷度
三维 式(15) 测量整体结构的塌陷度与精细度 未考虑不同位置的粗糙度且材料耗费过多 精细度与塌陷度
表 2  不同维度的定量评价方法比较
81 LIU S H, ZHANG H G, AHLFELD T, et al. Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites [EB/OL]. 2022-04-01. https://link.springer.com.article/10.1007/S42242-022-00194-3.
82 NOWICKI M, ZHU W, SARKAR K, et al 3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink[J]. Bioprinting, 2020, 17: e00066
doi: 10.1016/j.bprint.2019.e00066
1 MEI Q, YUEN H Y, ZHAO X Mechanical stretching of 3D hydrogels for neural stem cell differentiation[J]. Bio-Design and Manufacturing, 2022, 5: 714- 728
doi: 10.1007/s42242-022-00209-z
2 SCHäTZLEIN E, BLAESER A Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants[J]. Communications Biology, 2022, 5 (737): 1- 17
3 RONZONI F L, ALIBERTI F, SCOCOZZA F, et al Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation[J]. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16: 484- 495
doi: 10.1002/term.3293
4 FATIMI A, OKORO O V, PODSTAWCZYK D, et al Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review[J]. Gels, 2022, 8 (3): 1- 55
5 付小兵, 黄沙. 生物3D打印与再生医学[M]. 武汉: 华中科技大学出版社, 2020.
6 吴春亚, 吴佳昊, 吴喆冉, 等 生物3D打印技术的新研究进展[J]. 机械工程学报, 2021, 57 (5): 114- 132
WU Chun-ya, WU Jia-hao, WU Zhe-ran, et al New progress of biological 3D printing technology[J]. Journal of Mechanical Engineering, 2021, 57 (5): 114- 132
doi: 10.3901/JME.2021.05.114
7 贺永, 高庆, 刘安, 等 生物3D打印——从形似到神似[J]. 浙江大学学报: 工学版, 2019, 53 (3): 407- 419
HE Yong, GAO Qing, LIU An, et al 3D bioprinting: from structure to function[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 407- 419
8 BIENIA M, LEJEUNE M, CHAMBON M, et al Inkjet printing of ceramic colloidal suspensions: filament growth and breakup[J]. Chemical Engineering Science, 2016, 149: 1- 13
doi: 10.1016/j.ces.2016.04.015
9 MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
10 白大鹏, 张洪, 李季杨 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报: 工学版, 2021, 55 (2): 289- 298
BAI Da-peng, ZHANG Hong, LI Ji-yang Biological 3D printer and topography detection of printing model[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 289- 298
11 CUI X L, LI J, HARTANTO Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks [J]. Advanced Healthcare Materials, 2020, 9(15): 1901648.
12 PLACONE J K, ENGLER A J. Recent advances in extrusion-based 3D printing for biomedical applications [J]. Advanced Healthcare Materials, 2018, 7(8): 1701161.
13 IN Z B Y, LI Y R, YU K, et al. 3D printing of physical organ models: recent developments and challenges [J]. Advanced Science, 2021, 8(17): 2101394.
14 毛宏理, 顾忠伟 生物3D打印高分子材料发展现状与趋势[J]. 中国材料进展, 2018, 37 (12): 949- 969
MAO Hong-li, GU Zhong-wei Polymers in 3D bioprinting: progress and challenges[J]. Materials China, 2018, 37 (12): 949- 969
15 朱敏, 黄婷, 杜晓宇, 等 生物材料的3D打印研究进展[J]. 上海理工大学学报, 2017, 39 (5): 473- 483
ZHU Min, HUANG Ting, DU Xiao-yu, et al Progress of the 3D printing technology for biomaterials[J]. Journal of University of Shanghai for Science and Technology, 2017, 39 (5): 473- 483
16 SOMASEKHAR L, HUYNH N D, VECHECK A, et al Three-dimensional printing of cell-laden microporous constructs using blended bioinks[J]. Journal of Biomedical Materials Research Part A, 2022, 110 (3): 535- 546
doi: 10.1002/jbm.a.37303
17 OZBOLAT I T, HOSPODIUK M Current advances and future perspectives in extrusion-based bioprinting[J]. Biomaterials, 2016, 76: 321- 343
doi: 10.1016/j.biomaterials.2015.10.076
18 GLEADALL A, VISSCHER D, YANG J, et al Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance[J]. Burns and Trauma, 2018, 6 (19): 025020
19 ZHOU K, SUN Y D, YANG J Q, et al Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths[J]. Journal of Materials Chemistry B, 2022, 10 (12): 1897- 1907
doi: 10.1039/D1TB02554F
20 WANG Y, YUAN X, YAO B, et al Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing[J]. Bioactive Materials, 2022, 17: 178- 194
doi: 10.1016/j.bioactmat.2022.01.024
21 CHOE R, DEVOY E, KUZEMCHAK B, et al Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering[J]. Biofabrication, 2022, 14 (2): 025015
doi: 10.1088/1758-5090/ac5220
22 CIDONIO G, GLINKA M, DAWSON J I, et al The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine[J]. Biomaterials, 2019, 209: 10- 24
doi: 10.1016/j.biomaterials.2019.04.009
23 ANAND R, AMOLI M S, HUYSECOM A-S, et al A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing[J]. Biomedical Materials, 2022, 17 (4): 045027
doi: 10.1088/1748-605X/ac78b8
24 BOONLAI W, HIRUN N, SUKNUNTHA K, et al. Development and characterization of pluronic F127 and methylcellulose based hydrogels for 3D bioprinting [EB/OL]. (2022-04-28). https://link.springer.com/article/10.1007/s00289-022-04271-6.
25 SONG S, LIU X, HUANG J, et al Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation[J]. Biomaterials Advances, 2022, 133: 112639
doi: 10.1016/j.msec.2021.112639
26 SU H, LI Q, LI D, et al A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels[J]. Materials Horizons, 2022, 9 (9): 2393- 2407
doi: 10.1039/D2MH00314G
27 DATTA P, VYAS V, DHARA S, et al Anisotropy properties of tissues: a basis for fabrication of biomimetic anisotropic scaffolds for tissue engineering[J]. Journal of Bionic Engineering, 2019, 16 (5): 842- 868
doi: 10.1007/s42235-019-0101-9
28 SCHWAB A, LEVATO R, D'ESTE M, et al Printability and shape fidelity of bioinks in 3D bioprinting[J]. Chemical Reviews, 2020, 120 (19): 10850- 10877
29 KYLE S, JESSOP Z M, AL-SABAH A, et al ‘Printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art[J]. Advanced Healthcare Materials, 2017, 6 (16): 1700264
doi: 10.1002/adhm.201700264
30 马爱洁, 杨晶晶, 陈卫星. 聚合物流变学基础[M]. 北京: 化学工业出版社, 2018.
31 JIANG T, MUNGUIA-LOPEZ J G, FLORES-TORRES S, et al Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication[J]. Applied Physics Reviews, 2019, 6 (1): 011310
doi: 10.1063/1.5059393
32 PAXTON N, SMOLAN W, BOCK T, et al Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability[J]. Biofabrication, 2017, 9 (4): 044107
doi: 10.1088/1758-5090/aa8dd8
33 吴其晔, 巫静安. 高分子材料流变学[M]. 北京: 高等教育出版社, 2014.
34 COGSWELL F N Converging flow of polymer melts in extrusion dies[J]. Polymer Engineering and Science, 1972, 12 (1): 64- 73
35 SNELLING G R, LONTZ J F Mechanism of lubricant-extrusion of teflon tfe-tetrafluoroethylene resins[J]. Journal of Applied Polymer Science, 1960, 3 (9): 257- 265
doi: 10.1002/app.1960.070030901
36 BENBOW J J The dependence of output rate on die shape during catalyst extrusion[J]. Chemical Engineering Science, 1971, 26 (9): 1467- 1473
doi: 10.1016/0009-2509(71)80066-0
37 BENBOW J J, OXLEY E W, BRIDGWATER J The extrusion mechanics of pastes: the influence of paste formulation on extrusion parameters[J]. Chemical Engineering Science, 1987, 42 (9): 2151- 2162
doi: 10.1016/0009-2509(87)85036-4
38 BENBOW J J, JAZAYERI S H, BRIDGWATER J The flow of pastes through dies of complicated geometry[J]. Powder Technology, 1991, 65 (1): 393- 401
39 TALLURI D J S, NGUYEN H T, AVAZMOHAMMADI R, et al Ink rheology regulates stability of bioprinted strands[J]. Journal of Biomechanical, 2022, 144 (7): 074503
doi: 10.1115/1.4053404
40 LIN S, LI B, YANG L, et al New method for reducing viscosity and shear stress in hydrogel 3D printing via multidimension vibration[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25 (16): 1796- 1811
doi: 10.1080/10255842.2022.2039129
41 FANG Y, GUO Y, LIU T, et al Advances in 3D bioprinting[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1 (1): 100011
doi: 10.1016/j.cjmeam.2022.100011
42 顾亚伟, 李牧, 范子文, 等 3D挤压成型生物打印含细胞水凝胶的理化性能[J]. 中国组织工程研究, 2018, 22 (22): 3583- 3588
GU Ya-wei, LI Mu, FAN Zi-wen, et al Physical and chemical properties of 3D extrusive bioprinting cell-encapsulated hydrogel[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (22): 3583- 3588
doi: 10.3969/j.issn.2095-4344.0746
43 LEE S C, GILLISPIE G, PRIM P, et al Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks[J]. Chemical Reviews, 2020, 120 (19): 10797- 10849
44 尚建忠, 蒋涛, 唐力, 等 可移植人体外耳支架的3D打印关键技术[J]. 国防科技大学学报, 2016, 38(1): 175-180.
SHANG Jian-zhong, JIANG Tao, TANG Li, et al. Key technology of transplantable human auricular scaffold based on 3D printing [J]. Journal of National University of Defense Technology, 2016, 38(1): 175-180.
45 LEE J W, AHN G, KIM J Y, et al Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology[J]. Journal of Materials Science-Materials in Medicine, 2010, 21 (12): 3195- 3205
doi: 10.1007/s10856-010-4173-7
46 SOBRAL J M, CARIDADE S G, SOUSA R A, et al Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency[J]. Acta Biomaterialia, 2011, 7 (3): 1009- 1018
doi: 10.1016/j.actbio.2010.11.003
47 HABIB A, SATHISH V, MALLIK S, et al 3D printability of alginate-carboxymethyl cellulose hydrogel[J]. Materials, 2018, 11 (3): 454
doi: 10.3390/ma11030454
48 DRAVID A, MCCAUGHEY-CHAPMAN A, RAOS B, et al Development of agarose–gelatin bioinks for extrusion-based bioprinting and cell encapsulation[J]. Biomedical Materials, 2022, 17 (5): 055001
doi: 10.1088/1748-605X/ac759f
49 NAGAHARA M H T, DECARLI M C, NETO P I, et al Crosslinked alginate-xanthan gum blends as effective hydrogels for 3D bioprinting of biological tissues[J]. Journal of Applied Polymer Science, 2022, 139 (28): e52612
50 OUYANG L Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting[J]. Trends in Biotechnology, 2022, 40 (7): 891- 902
doi: 10.1016/j.tibtech.2022.01.001
51 CHIMENE D, KAUNAS R, GAHARWAR A K Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies[J]. Advanced Materials, 2020, 32 (1): e1902026
doi: 10.1002/adma.201902026
52 BLAESER A, DUARTE CAMPOS D F, PUSTER U, et al Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity[J]. Advanced Healthcare Materials, 2016, 5 (3): 326- 333
doi: 10.1002/adhm.201500677
53 CUI Y, JIN R, ZHANG Y, et al Cellulose nanocrystal-enhanced thermal-sensitive hydrogels of block copolymers for 3D bioprinting[J]. International Journal of Bioprinting, 2021, 7 (4): 112- 122
doi: 10.18063/ijb.v7i4.397
54 RAMIREZ CABALLERO S S, SAIZ E, MONTEMBAULT A, et al 3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization[J]. Journal of Materials Science: Materials in Medicine, 2018, 30 (1): 1- 6
55 XU H H K, WANG P, WANG L, et al Calcium phosphate cements for bone engineering and their biological properties[J]. Bone Research, 2017, 5 (1): 17056
doi: 10.1038/boneres.2017.56
56 JI S, GUVENDIREN M Recent advances in bioink design for 3D bioprinting of tissues and organs[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5: 23
57 MOUSER V H M, MELCHELS F P W, VISSER J, et al Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting[J]. Biofabrication, 2016, 8 (3): 035003
doi: 10.1088/1758-5090/8/3/035003
58 KIM M H, LEE Y W, JUNG W K, et al Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98: 187- 194
doi: 10.1016/j.jmbbm.2019.06.014
59 SCHWARTZ R, MALPICA M, THOMPSON G L, et al Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103524
doi: 10.1016/j.jmbbm.2019.103524
60 SKARDAL A, ZHANG J, PRESTWICH G D Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates[J]. Biomaterials, 2010, 31 (24): 6173- 6181
doi: 10.1016/j.biomaterials.2010.04.045
61 董兰兰, 李亘, 熊胤泽, 等 GelMA/LPN/MC水凝胶的挤出式3D打印工艺与性能研究[J]. 机械工程学报, 2022, 58 (9): 283- 290
DONG Lan-lan, LI Gen, XIONG Yin-ze, et al Extrusion 3D printing processes and performance evaluation of GelMA/LPN/MC hydrogel[J]. Journal of Mechanical Engineering, 2022, 58 (9): 283- 290
doi: 10.3901/JME.2022.09.283
62 顾恒, 连芩, 王慧超, 等 GelMA复合凝胶的挤出式3D打印工艺及其性能研究[J]. 机械工程学报, 2020, 56 (1): 196- 204
GU Heng, LIAN Qin, WANG Hui-chao, et al Extrusion 3D printing processes and performance evaluation of GelMA composite hydrogel[J]. Journal of Mechanical Engineering, 2020, 56 (1): 196- 204
doi: 10.3901/JME.2020.01.196
63 NAGHIEH S, CHEN D Printability: a key issue in extrusion-based bioprinting[J]. Journal of Pharmaceutical Analysis, 2021, 11 (5): 564- 579
doi: 10.1016/j.jpha.2021.02.001
64 LIN Z N, JIANG T, KINSELLA J M, et al Assessing roughness of extrusion printed soft materials using a semi-quantitative method[J]. Materials Letters, 2021, 303: 4
65 HE Y, YANG F, ZHAO H, et al Research on the printability of hydrogels in 3D bioprinting[J]. Scientific Reports, 2016, 6 (1): 29977
doi: 10.1038/srep29977
66 KHODA A K M, OZBOLAT I T, KOC B A functionally gradient variational porosity architecture for hollowed scaffolds fabrication[J]. Biofabrication, 2011, 3 (3): 034106
doi: 10.1088/1758-5082/3/3/034106
67 CUTOLO A, NEIRINCK B, LIETAERT K, et al Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion[J]. Additive Manufacturing, 2018, 23: 498- 504
doi: 10.1016/j.addma.2018.07.008
68 RUIZ-CANTU L, GLEADALL A, FARIS C, et al Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing[J]. Biofabrication, 2016, 8 (1): 015016
doi: 10.1088/1758-5090/8/1/015016
69 HINTON T J, JALLERAT Q, PALCHESKO R, et al Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Science Advances, 2015, 1 (9): e1500758
doi: 10.1126/sciadv.1500758
70 MALEKPOUR A, CHEN X Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views[J]. Journal of Functional Biomaterials, 2022, 13 (2): 40
doi: 10.3390/jfb13020040
71 JIN Z, ZHANG Z, SHAO X, et al. Monitoring anomalies in 3D bioprinting with deep neural networks [EB/OL]. 2021-04-21. https://pubs.acs.org/doi/10.1021/acsbiomaterials.0c01761.
72 RUBERU K, SENADEERA M, RANA S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing [J]. Applied Materials Today, 2021, 22: 100914.
73 LEPPINIEMI J, LAHTINEN P, PAAJANEN A, et al 3D-printable bioactivated nanocellulose–alginate hydrogels[J]. ACS Applied Materials and Interfaces, 2017, 9 (26): 21959- 21970
doi: 10.1021/acsami.7b02756
74 BILLIET T, GEVAERT E, DE SCHRYVER T, et al The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability[J]. Biomaterials, 2014, 35 (1): 49- 62
doi: 10.1016/j.biomaterials.2013.09.078
75 SOLTAN N, NING L, MOHABATPOUR F, et al Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds[J]. ACS Biomaterials Science and Engineering, 2019, 5 (6): 2976- 2987
76 BEDNARZIG V, SCHRUFER S, SCHNEIDER T C, et al Improved 3D printing and cell biology characterization of inorganic-filler containing alginate-based composites for bone regeneration: particle shape and effective surface area are the dominant factors for printing performance[J]. International Journal of Molecular Sciences, 2022, 23 (9): 4750
doi: 10.3390/ijms23094750
77 OUYANG L L, YAO R, ZHAO Y, et al Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells[J]. Biofabrication, 2016, 8 (3): 035020
doi: 10.1088/1758-5090/8/3/035020
78 DISTLER T, POLLEY C, SHI F, et al Electrically conductive and 3D-printable oxidized alginate-gelatin polypyrrole: PSS hydrogels for tissue engineering[J]. Advanced Healthcare Materials, 2021, 10 (9): e2001876
doi: 10.1002/adhm.202001876
79 GIUSEPPE M D, LAW N, WEBB B, et al Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79: 150- 157
doi: 10.1016/j.jmbbm.2017.12.018
[1] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.
[2] 高云凯,马超,刘哲,徐亚男. 基于畸变比能全局化策略的应力拓扑优化[J]. 浙江大学学报(工学版), 2020, 54(11): 2169-2178.
[3] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[4] 林林, 吴睿, 张欣欣. 微通道热沉几何结构的多参数反问题优化[J]. J4, 2011, 45(4): 734-740.
[5] 石冰 郑伟 李东晓 张明. 高性能通用H.264/AVC变换编码的硬件结构设计[J]. J4, 2008, 42(6): 933-938.
[6] 方健 张丁 徐红 王匡. 针对H.264去块滤波的实用结构设计[J]. J4, 2008, 42(3): 460-465.
[7] 杨华勇 弓永军 周华. 无泄漏平面型纯水换向阀研究[J]. J4, 2006, 40(3): 408-413.
[8] 胡倩 张珂 虞露. AVS视频解码器的一种结构设计与硬件实现[J]. J4, 2006, 40(12): 2139-2143.