Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (10): 2084-2092    DOI: 10.3785/j.issn.1008-973X.2022.10.020
能源工程、机械工程     
基于物理信息神经网络的燃烧化学微分方程求解
王意存1(),邢江宽1,2,罗坤1,*(),王海鸥1,樊建人1
1. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
2. 京都大学 机械工程与科学系,日本 京都 6158540
Solving combustion chemical differential equations via physics-informed neural network
Yi-cun WANG1(),Jiang-kuan XING1,2,Kun LUO1,*(),Hai-ou WANG1,Jian-ren FAN1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Department of Mechanical Engineering and Science, Kyoto University, Kyoto 6158540, Japan
 全文: PDF(2369 KB)   HTML
摘要:

为了有效地将湍流燃烧复杂的物理化学信息嵌入到物理信息神经网络(PINNs),选取湍流燃烧模拟中的2个典型场景案例,即刚性常微分方程ROBER问题及稳态射流火焰混合分数方程求解,探索PINNs在燃烧化学微分方程计算中的应用潜力. 结果表明,对于零维刚性反应系统,利用PINNs模型可以较好地捕捉到系统的演化过程;对于稳态射流火焰,PINNs的预测解与传统的数值解有较好的一致性. 残差点的选取对于燃烧化学领域内的复杂微分方程求解尤为重要,应基于具体的构型详细考虑.

关键词: 物理信息神经网络人工神经网络燃烧数值模拟微分方程残差点    
Abstract:

Two typical cases including the stiff system of ordinary differential equations ROBER problem and the steady-state mixture fraction equation in jet flame were selected in order to efficiently embed the complex physicochemical information of turbulent combustion into physics-informed neural networks (PINNs). The potential of PINNs in solving combustion chemical differential equations was explored. Results show that the PINNs model can correctly capture the evolution of the zero-dimensional stiff reaction system. PINNs solution accorded well with the conventional numerical solution for steady jet flame. The selection of residual points was particularly important for solving complex differential equations in the field of combustion and chemistry, which should be considered based on the specific configuration in detail.

Key words: physics-informed neural network    artificial neural network    numerical simulation of combustion    differential equation    residual point
收稿日期: 2022-03-17 出版日期: 2022-10-25
CLC:  TK 4  
基金资助: 国家杰出青年科学基金资助项目(51925603)
通讯作者: 罗坤     E-mail: wangyicun@zju.edu.cn;zjulk@zju.edu.cn
作者简介: 王意存(1996—),男,博士生,从事喷雾燃烧数值模拟及模型研究. orcid.org/0000-0001-7554-5919. E-mail: wangyicun@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王意存
邢江宽
罗坤
王海鸥
樊建人

引用本文:

王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.

Yi-cun WANG,Jiang-kuan XING,Kun LUO,Hai-ou WANG,Jian-ren FAN. Solving combustion chemical differential equations via physics-informed neural network. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2084-2092.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.020        https://www.zjujournals.com/eng/CN/Y2022/V56/I10/2084

图 1  PINNs网络拓扑结构示意图
隐藏层层数 L
Nl = 50 Nl = 100 Nl = 150 Nl = 200
3 3.01×10?3 5.47×10?6 7.30×10?6 9.46×10?6
4 2.30×10-3 4.40×10-7 5.21×10-7 3.16×10-7
5 7.15×10?4 7.48×10?7 1.88×10?7 1.96×10?7
表 1  ROBER问题(Te = 1 s)不同隐藏层配置的训练损失
层类型 激活函数 输出类型
ROBER问题 混合分数PDE
Input (None, 1): t (None, 2): x, y
Dense tanh (None, 100) (None, 200)
Dense tanh (None, 100) (None, 200)
Dense tanh (None, 100) (None, 200)
Dense tanh (None, 100) (None, 200)
Output # (None, 3): y1, y2, y3 (None, 1): Z
表 2  顺序的PINNs结构
图 2  动力系统组分的演化过程(Te= 1 s)
图 3  动力系统组分的演化过程(Te= 103 s)
图 4  二维射流扩散火焰算例构型
图 5  混合分数分布云图的对比
图 6  2种求解器在不同位置处的混合分数解对比
图 7  温度分布云图的对比
图 8  残差点分布示意图
案例 采样方式 ttr/s L
ROBER问题 基于构型 621.64 4.40×10?7
ROBER问题 均匀 619.89 3.36×10?4
ROBER问题 伪随机 607.62 2.46×10?4
混合分数PDE 基于构型 691.61 5.48×10?3
混合分数PDE 均匀 700.52 4.67×10?3
混合分数PDE 伪随机 700.82 2.55×10?3
表 3  不同采样方式训练所需的时间及损失大小
图 9  不同采样方式的损失值随迭代步数的变化
1 RAISSI M, PERDIKARIS P, KARNIADAKIS G E Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686- 707
doi: 10.1016/j.jcp.2018.10.045
2 BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2018, 18: 1- 43
3 RAISSI M, YAZDANI A, KARNIADAKIS G E Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367 (6481): 1026- 1030
doi: 10.1126/science.aaw4741
4 JIN X W, CAI S Z, LI H, et al NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951
doi: 10.1016/j.jcp.2020.109951
5 MAO Z P, JAGTAP A D, KARNIADAKIS G E Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789
doi: 10.1016/j.cma.2019.112789
6 KUMAR A, RIDHA S, NARAHARI M, et al Physics-guided deep neural network to characterize non-Newtonian fluid flow for optimal use of energy resources[J]. Expert Systems with Applications, 2021, 183: 115409
doi: 10.1016/j.eswa.2021.115409
7 赵暾, 周宇, 程艳青, 等 基于内嵌物理机理神经网络的热传导方程的正问题及逆问题求解[J]. 空气动力学学报, 2021, 39 (5): 19- 26
ZHAO Tun, ZHOU Yu, CHENG Yan-qing, et al Solving forward and inverse problems of partial differential equations of heat conduction using physics-informed neural networks[J]. Acta Aerodynamica Sinica, 2021, 39 (5): 19- 26
doi: 10.7638/kqdlxxb-2020.0176
8 ZOBEIRY N, HUMFELD K D A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104232
doi: 10.1016/j.engappai.2021.104232
9 陆至彬, 瞿景辉, 刘桦, 等 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72 (3): 1496- 1503
LU Zhi-bin, QU Jing-hui, LIU Hua, et al Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. Journal of Chemical Industry and Engineering (China), 2021, 72 (3): 1496- 1503
doi: 10.11949/0438-1157.20201879
10 PENG G, ALBER M, TEPOLE A B, et al Multiscale modeling meets machine learning: what can we learn?[J]. Archives of Computational Methods in Engineering, 2021, 28 (3): 1017- 1037
doi: 10.1007/s11831-020-09405-5
11 HUANG Y, ZHANG Z, ZHANG X A direct-forcing immersed boundary method for incompressible flows based on physics-informed neural network[J]. Fluids, 2022, 7 (2): 56
doi: 10.3390/fluids7020056
12 FUKS O, TCHELEPI H A Limitations of physics informed machine learning for nonlinear two-phase transport in porous media[J]. Journal of Machine Learning for Modeling and Computing, 2020, 1 (1): 19- 37
doi: 10.1615/JMachLearnModelComput.2020033905
13 JI W, QIU W, SHI Z, et al Stiff-pinn: physics-informed neural network for stiff chemical kinetics[J]. The Journal of Physical Chemistry A, 2021, 125 (36): 8098- 8106
doi: 10.1021/acs.jpca.1c05102
14 KNIO O M, NAJM H N, WYCKOFF P S A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation[J]. Journal of Computational Physics, 1999, 154 (2): 428- 467
doi: 10.1006/jcph.1999.6322
15 LANSER D, VERWER J G Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling[J]. Journal of Computational and Applied Mathematics, 1999, 111 (1/2): 201- 216
doi: 10.1016/S0377-0427(99)00143-0
16 ORAN E S, BORIS J P, BORIS J P. Numerical simulation of reactive flow [M]. Cambridge: Cambridge University Press, 2001.
17 SPORTISSE B An analysis of operator splitting techniques in the stiff case[J]. Journal of Computational Physics, 2000, 161 (1): 140- 168
doi: 10.1006/jcph.2000.6495
18 GICQUEL L, STAFFELBACH G, POINSOT T Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38 (6): 782- 817
doi: 10.1016/j.pecs.2012.04.004
19 夏一帆. 面向航空发动机燃烧室点火问题的数值计算方法研究[D]. 杭州: 浙江大学, 2019.
XIA Yi-fan. A study of numerical methods for the ignition process in aeroengine combustors [D]. Hangzhou: Zhejiang University, 2019.
20 ECHEKKI T, MASTORAKOS E. Turbulent combustion modeling: Advances, new trends and perspectives [M]. Berlin: Springer, 2010.
21 LU L, MENG X H, MAO Z P, et al DeepXDE: A deep learning library for solving differential equations[J]. SIAM Review, 2021, 63 (1): 208- 228
doi: 10.1137/19M1274067
22 NABIAN M A, GLADSTONE R J, MEIDANI H Efficient training of physics-informed neural networks via importance sampling[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36 (8): 962- 977
doi: 10.1111/mice.12685
23 武育宏. 基于物理机制的深度神经网络在数值求解非线性Degasperis-Procesi方程中的应用[D]. 上海: 上海师范大学, 2020.
WU Yu-hong. Application of physics-informed neural network in numerical solving of nonlinear Degasperis-Procesi equation [D]. Shanghai: Shanghai Normal University, 2020.
24 WANNER G, HAIRER E. Solving ordinary differential equations II [M]. Berlin: Springer, 1996.
25 ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [C]// 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah: USENIX Association, 2016: 265-283.
26 WELLER H G, TABOR G, JASAK H, et al A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12 (6): 620- 631
doi: 10.1063/1.168744
27 IMREN A, HAWORTH D C On the merits of extrapolation-based stiff ODE solvers for combustion CFD[J]. Combustion and Flame, 2016, 174: 1- 15
doi: 10.1016/j.combustflame.2016.09.018
28 GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: [s. n.], 2010: 249-256.
29 KINGMA D P, BA J. Adam: A method for stochastic optimization [EB/OL]. [2022-03-01]. https://arxiv.org/abs/1412.6980.
30 LAGARIS I E, LIKAS A, FOTIADIS D I Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998, 9 (5): 987- 1000
doi: 10.1109/72.712178
31 VAN OIJEN J A, LAMMERS F A, DE GOEY L Modeling of complex premixed burner systems by using flamelet-generated manifolds[J]. Combustion and Flame, 2001, 127 (3): 2124- 2134
doi: 10.1016/S0010-2180(01)00316-9
32 PIERCE C D, MOIN P Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73- 97
doi: 10.1017/S0022112004008213
33 BILGER R W, STARNER S H, KEE R J On reduced mechanisms for methane air combustion in nonpremixed flames[J]. Combustion and Flame, 1990, 80 (2): 135- 149
doi: 10.1016/0010-2180(90)90122-8
34 NAKAMURA M, AKAMATSU F, KUROSE R, et al Combustion mechanism of liquid fuel spray in a gaseous flame[J]. Physics of Fluids, 2005, 17 (12): 123301
doi: 10.1063/1.2140294
[1] 程鸿,胡佳杰,刘勇,叶远青. 强度传输方程和神经网络融合的三维重构算法[J]. 浙江大学学报(工学版), 2021, 55(4): 658-664.
[2] 刘芳,汪震,刘睿迪,王锴. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.
[3] 高正伟,金台,宋昌成,罗坤,樊建人. 基于人工神经网络的超临界小火焰模型研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1968-1977.
[4] 吕福在,胡宇天,伍建军,王林翔. 双程形状记忆效应的唯象动力学模型[J]. 浙江大学学报(工学版), 2020, 54(4): 642-649.
[5] 黄赠, 王锐, 赵宇, 魏振磊. 隐伏断层地震诱发滑坡易发性评价[J]. 浙江大学学报(工学版), 2017, 51(11): 2136-2143.
[6] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[7] 刘凯, 张立民, 张超. 受限玻尔兹曼机的新混合稀疏惩罚机制[J]. 浙江大学学报(工学版), 2015, 49(6): 1070-1078.
[8] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. 浙江大学学报(工学版), 2014, 48(7): 1209-1216.
[9] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. J4, 2014, 48(2): 0-0.
[10] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[11] 任沙浦, 沈国江. 短时交通流智能混合预测技术[J]. J4, 2010, 44(8): 1473-1478.
[12] 孔祥杰, 沈国江, 梁同海. 具有公交优先的路网交通流智能协调控制[J]. J4, 2009, 43(6): 1026-1031.
[13] 李芳宇, 孙守迁, 张克俊, 等. 求解偏微分方程反问题的改进基因表达式编程算法[J]. J4, 2009, 43(11): 2023-2027.
[14] 谭大鹏 李培玉 潘晓弘. 基于振动信号测量的连铸下渣检测系统[J]. J4, 2008, 42(8): 1399-1403.
[15] 丁毅 顾培夫 陆巍 郑臻荣. 利用微分方程数值解构造自由曲面反光器[J]. J4, 2007, 41(9): 1516-1518.