Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (10): 1946-1954    DOI: 10.3785/j.issn.1008-973X.2019.10.012
土木工程     
水平受荷斜桩双曲线型p-y曲线的构建及其应用
曹卫平1,2(),夏冰1,3(),葛欣1,4
1. 西安建筑科技大学 土木工程学院,陕西 西安 710055
2. 西安建筑科技大学 陕西省岩土与地下空间工程重点实验室,陕西 西安 710055
3. 四川文理学院 建筑工程学院,四川 达州 635000
4. 中铁二局 第三工程有限公司,四川 成都 610031
Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles
Wei-ping CAO1,2(),Bing XIA1,3(),Xin GE1,4
1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Key Laboratory of Geotechnical and Underground Space Engineering, Shaanxi Province, Xi’an University of Architecture and Technology, Xi’an 710055, China
3. School of Architectural Engineering, Sichuan University of Arts and Science, Dazhou 635000, China
4. 3st Engineering Limited Company, China Railway No.2 Engineering Group Limited Company, Chengdu 610031, China
 全文: PDF(1593 KB)   HTML
摘要:

基于模型试验获得中密干砂中水平受荷斜桩的桩侧土反力p与桩身位移y的关系曲线,探讨斜桩和直桩的桩侧极限土反力、初始地基反力模量与桩身倾角的关系,构建砂土地基斜桩的双曲线型p-y曲线. 应用建立的双曲线型p-y曲线对文献[16,20]的模型试验进行计算,计算结果与实测结果具有较好的一致性,验证了建立的双曲线型p-y曲线的合理性. 运用建立的p-y曲线,分析影响水平受荷斜桩性状的因素,结果如下. 1)与桩顶自由条件相比,斜桩桩顶固支可以有效地减小桩顶横向位移、桩身最大弯矩及最大剪力. 2)在竖向下压荷载作用下,正斜桩和直桩的桩顶横向位移、桩身最大弯矩及最大剪力随着竖向下压荷载的增加而增大,负斜桩的桩顶横向位移、桩身最大弯矩及最大剪力随着竖向下压荷载的增加先减小至0,再反向增大. 在竖向上拔荷载作用下,直桩的桩顶横向位移、桩身最大弯矩及最大剪力随着上拔荷载的增加而减小,正斜桩的桩顶横向位移、桩身最大弯矩及最大剪力随着上拔荷载的增加先减小至0,再反向增大,负斜桩的桩顶横向位移、桩身最大弯矩及最大剪力随着上拔荷载的增加而增大.

关键词: 斜桩水平荷载砂土桩土相互作用    
Abstract:

Relation curves of lateral resistance force per unit length to pile deflection were measured for single battered piles based on model tests under horizontally loads in medium-dense dry sand. The relations of the profile of limiting lateral resistance force per unit length (LFP) and initial subgrade reaction coefficient to batter angle of inclined piles and plumb piles were analyzed. A hyperbolic expression was used to establish a p-y curve approach for battered pile subject to lateral loads. The results were calculated by using the hyperbolic p-y curves established herein and that reported in literatures. The calculation results accorded well with the experimental results, which verified the rationality of the above method. The approach was used to analyze the behaviors of laterally loaded batter piles. 1) The pile-top lateral displacement, the maximum bending moment and the maximum shearing force in a fixed-head batter pile are less than that of a free-head batter pile with which induced the same load. 2) The vertical downwards load on the pile top can increase the pile-top lateral displacement, the maximum bending moment and the maximum shearing force for both the positively battered piles and the plumbed piles. The pile-top lateral displacement, the maximum bending moment and the maximum shearing force will firstly decrease to zero and then increase reversely with the increase of vertical downwards load in the case of negatively battered piles. The pile-top lateral displacement, the maximum bending moment and the maximum shearing force of the plumbed pile, under a same lateral load, will decrease with the increase of the vertical uplifting load, while that of the positively battered pile decreases to zero and then increases reversely with the increases of the vertical uplifting load, and that of the negatively battered pile increases with the increase of the vertical uplifting load.

Key words: battered pile    horizontal load    sand    pile-soil interaction
收稿日期: 2018-08-24 出版日期: 2019-09-30
CLC:  TU 43  
作者简介: 曹卫平(1969—),男,教授,从事岩土工程的研究. orcid.org/0000-0001-7858-8156. E-mail: caowp@xauat.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹卫平
夏冰
葛欣

引用本文:

曹卫平,夏冰,葛欣. 水平受荷斜桩双曲线型p-y曲线的构建及其应用[J]. 浙江大学学报(工学版), 2019, 53(10): 1946-1954.

Wei-ping CAO,Bing XIA,Xin GE. Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1946-1954.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.10.012        http://www.zjujournals.com/eng/CN/Y2019/V53/I10/1946

图 1  斜桩示意图
图 2  直桩与斜桩在2倍桩径深度的p-y曲线
图 3  初始地基反力模量及桩侧极限土反力
文献 松砂 中密砂 密砂
文献[9] 1 100~5 425 5 425~16 300 16 300~34 000
文献[6] 1 270~9 910 9 910~52 780 52 780~74 450
本文试验 ? 73 800 ?
表 1  干砂水平向初始地基反力模量的比例系数
图 4  ψ-α关系图(深度取2D)
图 5  宽度为B的倾斜挡土墙的土反力
图 6  pub/(cos δ·KpbγD)与z/D的关系
图 7   $\lambda $与 $D$关系图
图 8  pub/pu与桩身倾角的关系
图 9  斜桩桩身受力示意图
Gs Dr/% ρd, max/(kg·m?3 φ'/(°) c'/kPa wL/% wP/%
2.69 61 1.570 30.0 1.0 32 23
表 2  文献[16]中地基土资料
桩型 L/m L0/m L1/m D/mm t/mm EI/(kN·m2 ηhbηh/(MN·m?3 pubz?1puz?1(kN·m?2
正斜桩(1∶5) 6 3.410 2.156 114 4.5 464.8 16.345 24.091
直桩 6 3.410 2.390 114 4.5 464.8 8.558 15.149
负斜桩(?1∶5) 6 3.410 2.214 114 4.5 464.8 12.456 18.629
表 3  文献[16]中模型桩参数与p-y曲线中的参数
图 10  文献[16]中实测结果与本文方法计算结果的比较
Gs ρd,max/(g·cm?3 ρd,min/(g·cm?3 ρ/(g·cm?3 φ'/(°) c'/kPa
2.679 1.64 1.32 1.62 42.6 0
表 4  文献[20]中地基土资料
桩型 L/m L1/mm D/mm t/mm EI/(kN·m2 ηhbηh/(MN·m?3 pubz?1puz?1/(kN·m?2
正斜桩(1∶6) 2.472 206 50.8 16.5 15.408 29.180 42.085
正斜桩(1∶12) 2.446 206 50.8 16.5 15.408 26.173 34.736
直桩 2.438 206 50.8 16.5 15.408 23.122 29.425
负斜桩(?1∶12) 2.446 206 50.8 16.5 15.408 20.070 25.540
负斜桩(?1∶6) 2.472 206 50.8 16.5 15.408 17.063 22.675
表 5  文献[20]中模型桩参数与p-y曲线中的参数
图 11  文献[20]中实测结果与本文方法计算结果的比较
图 12  土层剖面图
图 13  桩顶横向位移、桩身最大弯矩及最大剪力
图 14  桩顶竖向荷载对桩身内力的影响
1 ZHANG L M, MCVAY M C, LAI P W Centrifuge modeling of laterally loaded single battered piles in sand[J]. Canadian Geotechnical Journal, 1999, 36 (6): 1074- 1084
doi: 10.1139/t99-072
2 ABU-FARSAKH M Y, YU X, PATHAK B, et al Field testing and analyses of a batter pile group foundation under lateral loading[J]. Transportation Research Record Journal of the Transportation Research Board, 2011, 2212: 42- 55
doi: 10.3141/2212-05
3 SALISBURY N G, DAVIDOW S A. Current design and construction practices for micropile supported foundations of electrical transmission structures in North America [C]// Proceedings of the 12th International Workshop on Micropiles Conference.Kraków: Poland, 2014.
4 徐江, 龚维明, 张琪, 等 大口径钢管斜桩竖向承载特性数值模拟与现场试验研究[J]. 岩土力学, 2017, 38 (8): 2434- 2440
XU Jiang, GONG Wei-ming, ZHANG Qi, et al Numerical simulation and field test study on vertical bearing behavior of large diameter steel of inclined piles[J]. Rock and Soil Mechanics, 2017, 38 (8): 2434- 2440
5 横山幸满. 桩结构物的计算方法和计算实例[M]. 唐业清, 译. 北京: 中国铁道出版社, 1984.
6 API. Planning, designing, and constructing fixed offshore platforms: working stress design [M]. Washington, D. C: API, 2014.
7 Offshore standard. Design of offshore wind turbine structure: DNV-OS-J101 [S]. Hovik, Norway: Det Norske Veritas, 2014.
8 中华人民共和国行业标准编写组. 港口工程桩基规范: JTS 167-4-2012 [S]. 北京: 人民交通出版社, 2012.
9 REESE L C, COX W R, KOOP F D. Analysis of laterally loaded Piles in sand [C] // Proceedings of the 6th Annual Offshore Technology Conference. Houston: Texas, 1974: 473-483.
10 REESE L C Discussion on soil modulus for laterally loaded piles[J]. Transactions, ASCE, 1958, 123: 1071- 1074
11 GEORGIADIS M, ANAGNOSTOPOULOS C, SAFLEKOU S Centrifugal testing of laterally loaded piles in sand[J]. Canadian Geotechnical Journal, 1992, 29 (2): 208- 216
doi: 10.1139/t92-024
12 朱斌, 朱瑞燕, 罗军, 等 海洋高桩基础水平大变位性状模型试验研究[J]. 岩土工程学报, 2010, 32 (4): 521- 530
ZHU Bin, ZHU Rui-yan, LUO Jun, et al Model tests on characteristics of ocean and offshore elevated piles with large lateral deflection[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (4): 521- 530
13 朱斌, 杨永垚, 余振刚, 等 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34 (6): 1028- 1037
ZHU Bin, YANG Yong-yao, YU Zhen-gang, et al Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (6): 1028- 1037
14 ZHU B, LI T, XIONG G, et al Centrifuge model tests on laterally loaded piles in sand[J]. International Journal of Physical Modeling in Geotechnics, 2016, 16 (4): 1- 13
15 袁廉华, 陈仁朋, 孔令刚, 等 轴向荷载对斜桩水平承载特性影响试验及理论研究[J]. 岩土力学, 2013, 34 (7): 1958- 1964
YUAN Lian-hua, CHEN Ren-peng, KONG Ling-gang, et al Test and theoretical research on influence of axial load on lateral bearing capacity of batter piles[J]. Rock and Soil Mechanics, 2013, 34 (7): 1958- 1964
16 凌道盛, 任涛, 王云岗 砂土地基斜桩水平承载特性p-y曲线法 [J]. 岩土力学, 2013, 34 (1): 155- 162
LING Dao-sheng, REN Tao, WANG Yun-gang A p-y curves method for horizontal bearing characteristics of single batter pile in sands [J]. Rock and Soil Mechanics, 2013, 34 (1): 155- 162
17 曹卫平, 夏冰, 赵敏, 等 砂土中水平受荷斜桩的p-y 曲线及其应用 [J]. 岩石力学与工程学报, 2018, 37 (3): 743- 753
CAO Wei-ping, XIA Bing, ZHAO Min, et al P-y curves of laterally loaded single battered piles in sand and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (3): 743- 753
18 TERZAGHI K Evaluation of coefficient of subgrade reaction[J]. Geotechnique, 1955, 5 (4): 297- 326
doi: 10.1680/geot.1955.5.4.297
19 Canadian Geotechnical Society. Canadian foundation engineering manual [M]. Ottawa: Canadian Geotechnical Society Production Department, 2006.
20 AWOSHIKA K. Analysis of foundation with widely spaced batter piles [D]. Austin, Texas: University of Texas, 1971.
21 龚维明, 黄挺, 戴国亮 海上风电机高桩基础关键参数试验研究[J]. 岩土力学, 2011, (增 2): 115- 121
GONG Wei-ming, HUANG ting, DAI Guo-liang Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. Rock and Soil Mechanics, 2011, (增 2): 115- 121
22 孙永鑫. 近海风机超大直径单桩水平承载特性试验与数值分析[D]. 杭州: 浙江大学, 2016.
SUN Yong-xin. Experimental and numerical studies on a laterally loaded monopile foundation of offshore wind turbine [D]. Hangzhou: Zhejiang University, 2016.
[1] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.
[2] 徐日庆,张俊,朱剑锋, 王兴陈. 考虑扰动影响的修正Duncan-Chang模型[J]. J4, 2012, 46(1): 1-7.
[3] 朱剑锋, 徐日庆, 秦艳华. 基于SMP准则改进Lade-Duncan模型[J]. J4, 2011, 45(10): 1884-1888.
[4] 徐日庆, 李昕睿, 朱剑锋. 刚性挡土墙平动模式下中间被动土压力的计算[J]. J4, 2010, 44(10): 2005-2009.
[5] 常林越, 王金昌, 朱向荣, 谢新宇. 水平受荷长桩弹塑性解析计算[J]. J4, 2010, 44(10): 2029-2035.
[6] 吕凡任 陈云敏 陈仁朋 程泽海. 任意倾角斜桩承受任意平面荷载的弹性分析[J]. J4, 2004, 38(2): 191-194.