Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (6): 795-802    DOI: 10.3785/j.issn.1008-9497.2023.06.014
CSIAM-GDC 2023     
Multi-morphological design of TPMS-based microchannels with freeform boundary constraints
Guanhua YANG1,Lei WU2,Qinghui WANG1(),Zipeng CHI1
1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China
2.The 5th Electronics Research Institute,Ministry of Industry and Information,Guangzhou 511370,China
Download: HTML( 0 )   PDF(5587KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-morphology design method based on conformal mapping is proposed to design triply periodic minimal surface (TPMS) microchannels with freeform boundary constraints. This method first maps the boundary of a freeform surface to a plane, allowing for channel topology design in the 2D parametric domain; Then, a Beta growth function algorithm based on loop is proposed to achieve smooth transitions of various TPMS morphological features; Finally, by mapping the designed microchannels to the 3D space constrained by the free surface, the microchannels meet the design requirements. Our results show that the microchannels constructed by this method have good adaptability to complex surface boundaries and can achieve the design goals of internal morphological features.



Key wordsTPMS-based microchannel structure      multi-morphology      conformal mapping      transition area     
Received: 21 June 2023      Published: 30 November 2023
CLC:  TP 391  
Corresponding Authors: Qinghui WANG     E-mail: wqh@scut.edu.cn
Cite this article:

Guanhua YANG,Lei WU,Qinghui WANG,Zipeng CHI. Multi-morphological design of TPMS-based microchannels with freeform boundary constraints. Journal of Zhejiang University (Science Edition), 2023, 50(6): 795-802.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I6/795


复杂外形约束下的多形态特征TPMS微通道设计方法

对复杂外形约束下的三周期极小曲面(triply periodic minimal surface,TPMS)微通道结构,提出一种基于共形映射的多形态特征设计方法。首先,将自由曲面边界映射至平面,在二维参数域上进行通道拓扑结构设计;然后,提出一种基于环的Beta生长算法,实现多种TPMS形态特征的平滑过渡;最后,将在二维参数域上设计的微通道结构逆映射至自由曲面约束下的三维空间,完成设计。实例分析表明,采用本文方法设计的微通道结构对复杂曲面边界具有较好的适应能力,能实现内部形态特征设计目标。


关键词: TPMS微通道结构,  多形态特征,  共形映射,  过渡区域 
Fig.1 Schematic diagram of ring-based transition region generation
Fig.2 Process and schematic diagram of solving the offset distance in the transition region
Fig. 3 Four basic types of TPMS-based structures
Fig. 4 Multi-morphological TPMS-based structures with a star-shaped transition region
Fig. 5 Generation process of conformal TPMS-based microchannels
Fig. 6 Relationship between points on the 2D parameter field and points on the original surface
Fig. 7 Self-designed multi-morphological TPMS-based structures
Fig. 8 Multi-morphological TPMS-based microchannels conformal to complex surface
Fig. 9 Multi-morphological TPMS-based microchannels for gas turbine blades
[1]   WANG Y. Periodic surface modeling for computer aided nano design[J]. Computer-Aided Design, 2007, 39(3): 179-189. DOI:10.1016/j.cad.2006. 09.005
doi: 10.1016/j.cad.2006. 09.005
[2]   FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. DOI:10.1088/2631-7990/ac5be6
doi: 10.1088/2631-7990/ac5be6
[3]   LIU G, XIONG Y, ROSEN D W. Multidisciplinary design optimization in design for additive manufacturing[J]. Journal of Computational Design and Engineering, 2022, 9(1): 128-143. DOI:10.1093/jcde/qwab073
doi: 10.1093/jcde/qwab073
[4]   ADEGOKE K A, MAXAKATO N W. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques[J]. Coordination Chemistry Reviews, 2022, 457: 214389. DOI:10.1016/j.ccr.2021.214389
doi: 10.1016/j.ccr.2021.214389
[5]   FAN Z H, GAO R J, LIU S T. Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface[J]. Energy, 2022, 259: 125091. DOI:10.1016/j.energy.2022.125091
doi: 10.1016/j.energy.2022.125091
[6]   雷鸿源, 李静蓉, 徐志佳, 等. 孔隙表征参数驱动的TPMS多孔结构建模[J]. 计算机辅助设计与图形学学报, 2020, 32(1): 156-163. DOI:10.3724/SP.J.1089.2020.17893
LEI H Y, LI J R, XU Z J, et al. TPMS-based porous structures modelling driven by pore characteristic parameters[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(1): 156-163. DOI:10.3724/SP.J.1089.2020.17893
doi: 10.3724/SP.J.1089.2020.17893
[7]   LI D W, DAI N, TANG Y L, et al. Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes[J]. Journal of Mechanical Design, 2019, 141(7): 071402. DOI:10.1115/1.4042617
doi: 10.1115/1.4042617
[8]   YANG N, QUAN Z, ZHANG D W, et al. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering[J]. Computer-Aided Design, 2014, 56: 11-21. DOI:10.1016/j.cad.2014.06.006
doi: 10.1016/j.cad.2014.06.006
[9]   YOO D J, KIM K H. An advanced multi-morphology porous scaffold design method using volumetric distance field and beta growth function[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(9): 12. DOI:10.1007/s12541-015-0263-2
doi: 10.1007/s12541-015-0263-2
[10]   GÜNTHER F, WAGNER M, PILZ S, et al. Design procedure for triply periodic minimal surface based biomimetic scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126: 104871. DOI:10.1016/j.jmbbm.2021. 104871
doi: 10.1016/j.jmbbm.2021. 104871
[11]   REN F, ZHANG C, LIAO W, et al. Transition boundaries and stiffness optimal design for multi-TPMS lattices[J]. Materials & Design, 2021, 210: 110062. DOI:10.1016/j.matdes.2021.110062
doi: 10.1016/j.matdes.2021.110062
[12]   YOO D J. Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions[J]. Medical Engineering & Physics, 2012, 34(5): 625-639. DOI:10.1016/j.medengphy.2012. 03.009
doi: 10.1016/j.medengphy.2012. 03.009
[13]   YOO D J. Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(4): 527-537. DOI:10.1007/s12541-012-0068-5
doi: 10.1007/s12541-012-0068-5
[14]   FU J, DING J H, ZHANG L, et al. Development of conformal shell lattices via laser powder bed fusion and unraveling their mechanical responses via modeling and experiments[J]. Additive Manufacturing, 2023, 62: 103406. DOI:10.1016/j.addma.2023.103406
doi: 10.1016/j.addma.2023.103406
[15]   CHI Z P, WANG Q H, LI J R, et al. A conformal design approach of TPMS-based porous microchannels with freeform boundaries[J]. Journal of Mechanical Design, 2023, 145(10): 102001. DOI:10.1115/1.4062881
doi: 10.1115/1.4062881
[16]   XU C Y, LI J R, WANG Q H, et al. Contour parallel tool path planning based on conformal parameterisation utilising mapping stretch factors[J]. International Journal of Production Research, 2019, 57(1): 1-15. DOI:10.1080/00207543.2018. 1456699
doi: 10.1080/00207543.2018. 1456699
[17]   LORENSEN W E, CLINE H E. Marching cubes: A high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 163-169. DOI:10.1145/37402.37422
doi: 10.1145/37402.37422
[18]   AL-KETAN O, ROWSHAN R, AL-RUB R K ABU. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials[J]. Additive Manufacturing, 2018, 19: 167-183. DOI:10.1016/j.addma.2017.12.006
doi: 10.1016/j.addma.2017.12.006
[19]   FLOATER M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19-27. DOI:10.1016/S0167-8396(03)00002-5
doi: 10.1016/S0167-8396(03)00002-5
[1] Xinjing LI,Wanbin PAN,Ye YANG,Yigang WANG,Cheng LIN. A double-level intelligent improvement approach for overhangs on side loss[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 781-794.
[2] Yujie LIU,Yafu YUAN,Xiaorui SUN,Zongmin LI. A point cloud processing network combining global and local information[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 770-780.
[3] Wei CHEN,Jinwen QI,Jian LI,Ruixia SONG. A fast algorithm for V-system[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 761-769.
[4] Peiquan ZHANG,Weiwei XU. Hash encoding empowered IRON for inverse rendering: Geometry and material reconstruction[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 754-760.
[5] Tianqi CHENG,Lei WANG,Xinping GUO,Yuwei WANG,Chunxiang LIU,Bin LI. LK-CAUNet: Large kernel multi-scale deformable medical image registration network based on cross-attention[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 745-753.
[6] Feng DOU,Huiwen MA,Xinyang XIE,Wanwen YANG,Xue SHI,Li HAN,Bin LIN. Unsupervised generalized functional map learning for arbitrary 3D shape dense correspondence[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 736-744.
[7] Zhaohui XIA,Jianli LIU,Baichuan GAO,Tao NIE,Chen YU,Long CHEN,Jingui YU. Efficient GPU parallel strategy for multi-scale topology optimization via asymptotic homogenization[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 722-735.
[8] Fei WANG,Weihong LI,Yu YANG,Dazhi JIANG,Baoquan ZHAO,Xiaonan LUO. Highly efficient fluid-solid coupled incompressible SPH simulation method for atherosclerotic plaque generation[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 711-721.
[9] Zechu ZHANG,Weilong PENG,Keke TANG,Zhaoyang YU,Asad Khan,Meie FANG. Reconstructing tooth meshes by pyramid diffeomorphic deformation from CBCT images[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 701-710.
[10] Hanyang MAO,Chen PENG,Chen LI,Changbo WANG. Neural marching cubes for open surfaces[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 692-700.
[11] Kehua SU,Bailüe LIU,Na LEI,Kehan LI,Xianfeng GU. Focus+Context visualization based on optimal mass transportation[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 681-691.
[12] Shengjun LIU,Zi TENG,Haibo WANG,Xinru LIU. Two-dimensional shape intrinsic symmetry detection algorithm based on functional map[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 668-680.
[13] Zerun LIU,Yufei YIN,Wenhao XUE,Rui GUO,Lechao CHENG. A review of conditional image generation based on diffusion models[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 651-667.
[14] Xiaodong TAN,Qi ZHAO,Mingzhu WEN,Xiaochao WANG. A hybrid image watermarking algorithm based on BEMD,DCT and SVD[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 442-454.
[15] Yuhua FANG,Feng YE. MFDC-Net: A breast cancer pathological image classification algorithm incorporating multi-scale feature fusion and attention mechanism[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 455-464.