Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (6): 754-760    DOI: 10.3785/j.issn.1008-9497.2023.06.010
CCF CAD/CG 2023     
Hash encoding empowered IRON for inverse rendering: Geometry and material reconstruction
Peiquan ZHANG,Weiwei XU()
College of Computer Science and Technology,Zhejiang University,Hangzhou 310058,China
Download: HTML( 1 )   PDF(2773KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, the utilization of neural networks to represent 3D scenes for novel view synthesis has emerged as a new research focus in computer graphics, known as neural rendering. Neural networks can also be applied to efficiently represent the geometry and materials of scenes, enabling the reconstruction of high-quality meshes and texture maps under the supervision of 2D photometric images in inverse rendering, thus serving existing graphics pipelines. In this paper, we extend the latest inverse rendering by optimizing neural SDFs and materials from photometric images (IRON) neural rendering model by introducing a multiresolution hash encoding technique and employing strategies such as freezing parameters to enhance the training speed of the original model. Through comparative evaluations on multiple datasets, we achieve approximately 40% improvement in training speed compared to the original model, while producing reconstructions with more details.



Key wordssigned distance fields      neural rendering      hash encoding     
Received: 12 June 2023      Published: 30 November 2023
CLC:  TP 391  
Corresponding Authors: Weiwei XU     E-mail: xww@cad.zju.edu.cn
Cite this article:

Peiquan ZHANG,Weiwei XU. Hash encoding empowered IRON for inverse rendering: Geometry and material reconstruction. Journal of Zhejiang University (Science Edition), 2023, 50(6): 754-760.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I6/754


哈希编码优化的IRON逆渲染模型:重建几何与材质

将神经网络用于场景几何材质的高效表达,结合逆向渲染在二维光度图的监督下重建高质量的网格和材质贴图,为现有的图形学流水线提供服务——神经渲染已成为近年来计算机图形学新的研究热点。在IRON(inverse rendering by optimizing neural SDFs and materials from photometric images)神经渲染模型基础上,通过引入多分辨率哈希编码,采用冻结训练等方法提高原始模型的训练速度。在多个数据集上的对比实验表明,优化后的IRON逆渲染模型训练速度提升了约40%,且重建结果中包含更多细节。


关键词: 符号距离场,  神经渲染,  哈希编码 
Fig.1 Edge-aware surface rendering algorithm
Fig.2 Optimized process of forward propagation
模型SDF

漫反射

反照率

镜面

反照率

粗糙度
IRON256×8256×8256×4256×4
本文方法128×6128×664×464×4
Table 1 Comparison of the network architectures in terms of width and depth
Fig.3 The reconstructed results of our method and those of a smaller network
模型↑ PSNR↑ SSIM↓ LPIPS↓ 相对时间
缩小网络26.0030.6080.224 50.583
IRON25.9380.6110.217 81.000
本文方法26.6560.6330.191 80.638
Table 2 Metrics of different model network architectures
Fig.4 Rendering results of different network architectures
数据集↑ PSNR↑ SSIM↓ LPIPS↓ Chamfer↓ 相对时间
superman26.528 / 25.9380.632 / 0.6110.191 / 0.218NaN0.638 / 1.000
rabbit24.545 / 24.4550.864 / 0.8610.203 / 0.248NaN0.655 / 1.000
xmen23.276 / 23.0140.845 / 0.8430.221 / 0.231NaN0.622 / 1.000
cat20.615 / 20.5190.307 / 0.2950.249 / 0.256NaN0.644 / 1.000
astronaut21.356 / 21.2960.335 / 0.3340.197 / 0.203NaN0.596 / 1.000
bagel34.077 / 33.1760.984 / 0.9790.035 / 0.0400.000 49 / 0.000 560.670 / 1.000
buddha36.067 / 33.8080.970 / 0.9350.003 / 0.0050.003 12 / 0.004 640.685 / 1.000
Table 3 Metrics comparison on a subset of data of our method and IRON model
Fig.5 Rendering results comparison of different models
Fig.6 Geometric reconstruction results comparison of different models
[1]   TEWARI A, FRIED O, THIES J, et al. State of the art on neural rendering[J]. Computer Graphic Forum, 2020, 39(2): 701-727. DOI:10.1111/cgf.14022
doi: 10.1111/cgf.14022
[2]   XIE Y, TAKIKAWA T, SAITO S, et al. Neural fields in visual computing and beyond[J]. Computer Graphic Forum, 2022, 41(2): 641-676. DOI:10. 1111/cgf.14505
doi: 10. 1111/cgf.14505
[3]   MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[C]// Proceedings of the 2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 405-501. DOI:10.1007/978-3-030-58452-8_24
doi: 10.1007/978-3-030-58452-8_24
[4]   WANG P, LIU L, LIU Y, et al. NeuS: Learning Neural Implicit Surfaces by Volume Rendering For Multi-View Reconstruction[Z]. (2021-06-20). https://arxiv.org/abs/2106.10689.
[5]   ZHANG K, LUAN F, LI Z, et al. IRON: Inverse rendering by optimizing neural SDFs and materials from photometric images[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans: IEEE, 2022: 5555-5564. DOI:10.1109/CVPR52688.2022.00548
doi: 10.1109/CVPR52688.2022.00548
[6]   MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics, 2022, 41(4): 102. DOI:10.1145/3528223.3530127
doi: 10.1145/3528223.3530127
[7]   MÜLLER T. Tiny-CUDA-NN[CP/OL]. (2021-01-07). .
[8]   BARRON J T, MILDENHALL B, TANCIK M, et al. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields[Z]. (2021-03-24). https://arxiv.org/abs/2103.13415. doi:10.1109/iccv48922.2021.00580
doi: 10.1109/iccv48922.2021.00580
[9]   ZHANG K, RIEGLER G, SNAVELY N, et al. NeRF++: Analyzing and Improving Neural Radiance Fields[Z]. (2020-10-15). https://arxiv.org/abs/2010.07492v2.
[10]   SRINIVASAN P P, DENG B, ZHANG X, et al. NeRV: Neural reflectance and visibility fields for relighting and view synthesis[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 7491-7500. DOI:10.1109/CVPR46437.2021.00741
doi: 10.1109/CVPR46437.2021.00741
[11]   NIEMEYER M, MESCHEDER L, OECHSLE M, et al. Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 3501-3512. DOI:10.1109/CVPR42600.2020.00356
doi: 10.1109/CVPR42600.2020.00356
[12]   YARIV L, KASTEN Y, MORAN D, et al. Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance[Z]. (2020-03-20). https://arxiv.org/abs/2003.09852.
[13]   GROPP A, YARIV L, HAIM N, et al. Implicit geometric regularization for learning shapes[C]// Proceedings of the 37th International Conference on Machine Learning. Vienna: ICML, 2020: 3569-3573.
[14]   MUNKBERG J, HASSELGREN J, SHEN T, et al. Extracting triangular 3D models, materials, and lighting from images[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 8270-8280. DOI:10.1109/CVPR52688.2022.00810
doi: 10.1109/CVPR52688.2022.00810
[15]   SHEN T, GAO J, YIN K, et al. Deep Marching Tetrahedra: A Hybrid Representation for High-Resolution 3D Shape Synthesis[Z]. (2021-11-08). https://arxiv.org/abs/2111.04276v1.
[16]   MÜLLER T, ROUSSELLE F, NOVÁ K J, et al. Real-time neural radiance caching for path tracing[J]. ACM Transactions on Graphics, 2021, 40(4): 1-16. DOI:10.1145/3450626.3459812
doi: 10.1145/3450626.3459812
[17]   LI Z, MÜLLER T, EVANS A, et al. Neuralangelo: High-fidelity neural surface reconstruction[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 8456-8465. DOI:10.1109/CVPR52729.2023. 00817
doi: 10.1109/CVPR52729.2023. 00817
[18]   MO S, CHO M, SHIN J. Freeze the Discriminator: A Simple Baseline for Fine-Tuning GANs[Z]. (2020-02-25). https://arxiv.org/abs/2002.10964v1.
[1] Tianqi CHENG,Lei WANG,Xinping GUO,Yuwei WANG,Chunxiang LIU,Bin LI. LK-CAUNet: Large kernel multi-scale deformable medical image registration network based on cross-attention[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 745-753.
[2] Feng DOU,Huiwen MA,Xinyang XIE,Wanwen YANG,Xue SHI,Li HAN,Bin LIN. Unsupervised generalized functional map learning for arbitrary 3D shape dense correspondence[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 736-744.
[3] Zhaohui XIA,Jianli LIU,Baichuan GAO,Tao NIE,Chen YU,Long CHEN,Jingui YU. Efficient GPU parallel strategy for multi-scale topology optimization via asymptotic homogenization[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 722-735.
[4] Fei WANG,Weihong LI,Yu YANG,Dazhi JIANG,Baoquan ZHAO,Xiaonan LUO. Highly efficient fluid-solid coupled incompressible SPH simulation method for atherosclerotic plaque generation[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 711-721.
[5] Zechu ZHANG,Weilong PENG,Keke TANG,Zhaoyang YU,Asad Khan,Meie FANG. Reconstructing tooth meshes by pyramid diffeomorphic deformation from CBCT images[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 701-710.
[6] Hanyang MAO,Chen PENG,Chen LI,Changbo WANG. Neural marching cubes for open surfaces[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 692-700.
[7] Kehua SU,Bailüe LIU,Na LEI,Kehan LI,Xianfeng GU. Focus+Context visualization based on optimal mass transportation[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 681-691.
[8] Shengjun LIU,Zi TENG,Haibo WANG,Xinru LIU. Two-dimensional shape intrinsic symmetry detection algorithm based on functional map[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 668-680.
[9] Zerun LIU,Yufei YIN,Wenhao XUE,Rui GUO,Lechao CHENG. A review of conditional image generation based on diffusion models[J]. Journal of Zhejiang University (Science Edition), 2023, 50(6): 651-667.
[10] Xiaodong TAN,Qi ZHAO,Mingzhu WEN,Xiaochao WANG. A hybrid image watermarking algorithm based on BEMD,DCT and SVD[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 442-454.
[11] Yuhua FANG,Feng YE. MFDC-Net: A breast cancer pathological image classification algorithm incorporating multi-scale feature fusion and attention mechanism[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 455-464.
[12] Xiang KONG,Jun CHEN. A class of triangular surface of the same degree with four shape parameters[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 153-159.
[13] Yuanpeng ZHANG, Hongtao CHEN, Weina WANG. Nonconvex nonsmooth variational model for Poisson noise removal of gray image[J]. Journal of Zhejiang University (Science Edition), 2023, 50(2): 160-166.
[14] Juncheng LI,Chengzhi LIU,Zhijun LUO,Zhiwen LONG. Bi-objective energy minimization of spatial parametric curves and its applications[J]. Journal of Zhejiang University (Science Edition), 2023, 50(1): 63-68.
[15] Haorong QUAN,Chengzhi LIU,Juncheng LI,Lian YANG,Lijuan HU. Preconditioned progressive iterative approximation for tensor product Said-Ball patches[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 682-690.