Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (5): 588-596    DOI: 10.3785/j.issn.1008-9497.2023.05.010
环境科学     
异位生态组合修复系统对九龙江支流水体不同形态磷的净化效果
韩笑羽1,2,方宏达1(),李剑捷2,骆冰儿2,林佳慧2,王馨2,刘婉欣3,何俊铭2,翟佳玉2,蓝伟斌3,郭沛涌2
1.集美大学 港口与海岸工程学院,福建 厦门 361021
2.华侨大学 化工学院 环境科学与工程系,福建 厦门 361021
3.中科同恒环境科技有限公司,福建 厦门 361021
Purification effect of ex-situ ecological combined remediation system on different forms of phosphorus in tributaries of Jiulong River
Xiaoyu HAN1,2,Hongda FANG1(),Jianjie LI2,Binger LUO2,Jiahui LIN2,Xin WANG2,Wanxin LIU3,Junming HE2,Jiayu ZHAI2,Weibin LAN3,Peiyong GUO2
1.College of Harbour and Coastal Engineering,Jimei University,Xiamen 361021,Fujian Province,China
2.Department of Environmental Science and Engineering,College of Chemical Engineering,Huaqiao University,Xiamen 361021,Fujian Province,China
3.ZKTH Environmental Technology Co. Ltd. ,Xiamen 361021,Fujian Province,China
 全文: PDF(2080 KB)   HTML( 0 )
摘要:

采用异位生态组合修复系统研究九龙江支流浦林溪污染水体不同形态磷净化效果及其对磷形态百分比的影响,并分析了异位生态组合修复系统各处理单元水体磷形态与环境因子的相关性。结果表明,异位生态组合修复系统对总磷(TP)、溶解态总磷(DTP)、可溶性正磷酸盐(DP)和颗粒态磷(PP)的平均总去除率分别为84.3%、84.4%、90.8%和78.9%,其中对DP净化效果最好。在异位生态组合修复系统各处理单元中,当原水水体中磷浓度较低时,泥膜共生高效混凝净水系统对TP、DTP和DP的净化效果良好,平均去除率分别可达81.4%、76.0%、84.8%,对PP的平均去除率可达66.7%;当原水水体中磷浓度较高时,泥膜共生高效混凝净水系统对TP、DTP和DP的平均去除率分别为37.8%、44.6%和45.8%,对PP的净化效果显著,平均去除率可达93.2%。当泥膜共生高效混凝净水系统出水水体磷浓度较低时,对TP和DTP的净化效果均表现为生态塘Ⅱ>生态塘Ⅰ,而对DP对TP、DTP的净化效果表现为生态塘Ⅰ>生态塘Ⅱ。对PP的净化效果均表现为生态塘Ⅱ>生态塘Ⅰ。生态塘Ⅲ对TP、DTP的净化效果存在波动,对DP的净化效果较为显著,平均去除率可达94.1%,对PP的净化效果一般。除泥膜共生高效混凝净水系统出水外,浦林溪污染水体和经异位生态组合修复系统处理的水体磷形态均以PP为主,不同形态磷占总磷百分比依次为PP>DTP>DP。Pearson相关性分析显示,异位生态组合修复系统不同处理单元水体各形态磷与pH、水温和溶解氧之间表现出不同的相关性。

关键词: 异位生态组合修复系统磷素总磷净化效果环境因子    
Abstract:

This paper discusses the effect of ex-situ ecological combined remediation (ESECR) system on the purification of phosphorus of different forms in the polluted water of Pulin Creek, a tributary of Jiulong River, and each unit of ESECR treatment system is analyzed on the correlation between different phosphorus forms and environmental factors. Results showed that the average total removal rate of TP, DTP, DP and PP of ESECR treatment system were 84.3%, 84.4%, 90.8% and 78.9% respectively, among them the DP purification effect was the best. In each unit of ESECR treatment system, when the phosphorus content in the raw water was low, the sludge-membrane symbiotic (SSM) high efficiency coagulation water purification system had good TP, DTP and DP purification effect, the average removal rate were 81.4%, 76.0% and 84.8% respectively, the average removal rate of PP was 66.7%; when the content of phosphorus in the raw water was high, the average removal rate of TP, DTP and DP of the SSM high efficiency coagulation water purification system were 37.8%, 44.6% and 45.8%, nevertheless, the purification effect of PP was significant, and the average removal rate was 93.2%. When the processed water of the SSM high efficiency coagulation water purification system with low phosphorus content, the purification effect of ecological pond Ⅱ on TP and DTP was better than that of ecological pond Ⅰ, but the results on DP was opposite. For PP, the purification effect in ecological pond Ⅱ was better than that in ecological pond Ⅰ regardless of the impact of phosphorus content. The purification effect of ecological pond Ⅲ fluctuated, the purification effect on DP is relatively significant, and the average removal rate was 94.1%. In addition to the SSM high efficiency coagulation water purification system, the form of phosphorus in the polluted water of Pulin Creek and purified water by ESECR technology was mainly PP, and the percentage of each form in total phosphorus appeared as PP>DTP>DP. Pearson correlation analysis showed that different phosphorus forms were correlated with pH, water temperature and dissolved oxygen (DO) in ESECR treatment system.

Key words: ex-situ ecological combined remediation system    phosphorus    total phosphorus    purification effect    environmental factors
收稿日期: 2022-09-19 出版日期: 2023-09-16
CLC:  X 522  
基金资助: 国家自然科学基金资助项目(20777021);福建省自然科学基金项目(2017J01018);厦门市高校科研院所产学研项目(3502Z20193051)
通讯作者: 方宏达     E-mail: hongdafang@126.com
作者简介: 韩笑羽(2001—),ORCID:https://orcid.org/0009-0008-6146-9773,女,本科生,主要从事水环境生态研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩笑羽
方宏达
李剑捷
骆冰儿
林佳慧
王馨
刘婉欣
何俊铭
翟佳玉
蓝伟斌
郭沛涌

引用本文:

韩笑羽, 方宏达, 李剑捷, 骆冰儿, 林佳慧, 王馨, 刘婉欣, 何俊铭, 翟佳玉, 蓝伟斌, 郭沛涌. 异位生态组合修复系统对九龙江支流水体不同形态磷的净化效果[J]. 浙江大学学报(理学版), 2023, 50(5): 588-596.

Xiaoyu HAN, Hongda FANG, Jianjie LI, Binger LUO, Jiahui LIN, Xin WANG, Wanxin LIU, Junming HE, Jiayu ZHAI, Weibin LAN, Peiyong GUO. Purification effect of ex-situ ecological combined remediation system on different forms of phosphorus in tributaries of Jiulong River. Journal of Zhejiang University (Science Edition), 2023, 50(5): 588-596.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.05.010        https://www.zjujournals.com/sci/CN/Y2023/V50/I5/588

图1  异位生态组合修复系统工艺流程
图2  异位生态组合修复系统不同处理单元的TP浓度
图3  异位生态组合修复系统对TP的去除率
图4  异位生态组合修复系统不同处理单元的DTP浓度
图5  异位生态组合修复系统对DTP的去除率
图6  异位生态组合修复系统不同处理单元的DP浓度
图7  异位生态组合修复系统对DP的去除率
图8  异位生态组合修复系统不同处理单元的PP浓度
图9  异位生态组合修复系统对PP的去除率
图10  异位生态组合修复系统中3种磷形态占TP浓度的百分比
处理单元指标溶解氧水温pH
泥膜共生系统TP-0.2460.556**-0.518*
DTP-0.2720.363-0.651**
DP-0.2560.344*-0.641**
PP-0.562**0.383-0.736**
生态塘ⅠTP0.2270.019-0.558**
DTP0.257-0.065-0.516*
DP0.272-0.036-0.456*
PP0.1180.2850.178
生态塘ⅡTP-0.118-0.3600.601**
DTP0.094-0.1190.436*
DP0.028-0.0470.027
PP-0.454*-0.6870.730**
生态塘ⅢTP-0.080-0.026-0.539**
DTP0.436*0.0450.057
DP0.376-0.0610.072
PP-0.396-0.063-0.732*
表1  异位生态组合修复系统水体中各形态磷与环境因子的相关性
1 HWANG S J. Eutrophication and the ecological health risk[J]. International Journal of Environmental Research and Public Health, 2020, 17(17): 6332. DOI:10.3390/ijerph17176332
doi: 10.3390/ijerph17176332
2 WANG Y M, LI K F, LIANG R F, et al. Distribution and release characteristics of phosphorus in a reservoir in Southwest China[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 303. DOI:10.3390/ijerph16030303
doi: 10.3390/ijerph16030303
3 蒋宇豪, 李敏, 唐明哲. 微污染河道修复系统及其应用[J]. 环境生态学, 2019, 1(8): 83-87.
JIANG Y H, LI M, TANG M Z. Micro-polluted river repair technology and application[J]. Environmental Ecology, 2019, 1(8): 83-87.
4 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 38-47.
State Environmental Protection Administration. Methods for Monitoring and Analysis of Wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2002: 38-47.
5 KASPRZAK P, GONSIORCZYK T, GROSSART H P, et al. Restoration of a eutrophic hard-water lake by applying an optimised dosage of poly-aluminium chloride (PAC)[J]. Limnologica, 2018, 70: 33-48. DOI:10.1016/j.limno.2018.04.002
doi: 10.1016/j.limno.2018.04.002
6 DU L, CHEN Q R, LIU P P, et al. Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by integrated vertical-flow constructed wetlands (IVCWs)[J]. Bioresource Technology, 2017, 243: 204-211. DOI:10.1016/j.biortech.2017.06.092
doi: 10.1016/j.biortech.2017.06.092
7 王东红. 吸附剂强化混凝去除污水处理厂二级出水中污染物的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 36-38. DOI:10.27061/d.cnki.ghgdu.2020. 000400
WANG D H. Study on Strengthening Coagulation with Adsorbent Remove Secondary Effluent Pollutants from Wastewater Treatment Plant[D]. Harbin: Harbin Institute of Technology, 2020: 36-38. DOI:10.27061/d.cnki.ghgdu.2020.000400
doi: 10.27061/d.cnki.ghgdu.2020.000400
8 LIU X Y, YANG H, WANG S L, et al. Study on the effectiveness of an independent biological phosphorus removal system based on immobilized biological fillers nitrogen removal system in municipal wastewater[J]. Process Safety and Environmental Protection, 2021, 156: 17-28. DOI:10.1016/j.psep. 2021.09.017
doi: 10.1016/j.psep. 2021.09.017
9 江宇勤, 厉炯慧, 方治国. 多孔填料特性对生物膜形成影响[J]. 环境科学, 2020, 41(8): 3684-3690. DOI:10.13227/j.hjkx.201912226
JIANG Y Q, LI J H, FANG Z G. Effect of porous fillers properties on biofilm growth[J]. Environmental Science, 2020, 41(8): 3684-3690. DOI:10.13227/j.hjkx.201912226
doi: 10.13227/j.hjkx.201912226
10 董蓓, 郑洁, 闻逸铮, 等. 滤料对生物滤池启动及污水处理的影响[J]. 环境科学与技术, 2021, 44(1): 238-245. DOI:10.19672/j.cnki.1003-6504.2021.S1.037
DONG B, ZHENG J, WEN Y Z, et al. The influence of filter material on the start-up of biological filter and sewage treatment[J]. Environmental Science & Technology, 2021, 44(1): 238-245. DOI:10.19672/j.cnki.1003-6504.2021.S1.037
doi: 10.19672/j.cnki.1003-6504.2021.S1.037
11 KADRI T, MAGDOULI S, ROUISSI T, et al. Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes[J]. Biochemical Engineering Journal, 2018,132: 279-287. DOI:10.1016/j.bej.2018.01.014
doi: 10.1016/j.bej.2018.01.014
12 REZANIA S, KAMYAB H, RUPANI P F, et al. Recent advances on the removal of phosphorus in aquatic plant-based systems[J]. Environmental Technology & Innovation, 2021, 24: 101933. DOI:10.1016/j.eti.2021.101933
doi: 10.1016/j.eti.2021.101933
13 张靖雨, 汪邦稳, 龙昶宇, 等.湿地植物对农村生活污水中氮磷的净化作用[J]. 水土保持通报, 2021, 41(5): 215-223. DOI:10.13961/j.cnki.stbctb.2021. 05.003
ZHANG J Y, WANG B W, LONG C Y, et al. Purification effects of various aquatic plants on nitrogen and phosphorus in rural sewage[J]. Bulletin of Soil and Water Conservation, 2021, 41(5): 215-223. DOI:10.13961/j.cnki.stbctb.2021.05.003
doi: 10.13961/j.cnki.stbctb.2021.05.003
14 LI Q, GU P, JI X Y, et al. Response of submerged macrophytes and periphyton biofilm to water flow in eutrophic environment: Plant structural, physicochemical and microbial properties[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109990. DOI:10.1016/j.ecoenv.2019.109990
doi: 10.1016/j.ecoenv.2019.109990
15 黄蓉, 杨文斌, 程俊杰, 等. 菹草和伊乐藻对水-沉积物界面磷迁移转化的影响[J]. 环境科学研究, 2019, 32(7): 1204-1212. DOI:10.13198/j.issn.1001-6929.2018.11.07
HUANG R, YANG W B, CHENG J J, et al. Effects of Potamogeton crispus L and Elodea nuttallii on phosphorus migration and transformation between water and sediment[J]. Research of Environmental Sciences, 2019, 32(7): 1204-1212. DOI:10.13198/j.issn.1001-6929.2018.11.07
doi: 10.13198/j.issn.1001-6929.2018.11.07
16 CARRILLO V, COLLINS C, BRISSON J, et al. Evaluation of long-term phosphorus uptake by Schoenoplectus californicus and Phragmites australis plants in pilot-scale constructed wetlands[J]. International journal of Phytoremediation, 2022, 24: 610-621. DOI:10.1080/15226514.2021.1960478
doi: 10.1080/15226514.2021.1960478
17 孙铎. 悬浮污泥过滤技术除磷效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 53-56. DOI:10.7666/d.D752766
SUN D. Phosphorus Removal from Wastewater by Suspended Sludge Filtration[D]. Harbin: Harbin Institute of Technology, 2014: 53-56. DOI:10.7666/d.D752766
doi: 10.7666/d.D752766
18 王成端, 张莹. HRT对稳定表流湿地净化污水效果的影响研究[J]. 中国给水排水, 2014, 30(11): 86-89. DOI:10.19853/j.zgjsps.1000-4602.2014.11.021
WANG C D, ZHANG Y. Effect of hydraulic retention time on sewage purification by stable surface flow wetlands[J]. China Water & Wastewater, 2014, 30(11): 86-89. DOI:10.19853/j.zgjsps.1000-4602.2014.11.021
doi: 10.19853/j.zgjsps.1000-4602.2014.11.021
19 ILYAS H, MASIH I. The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal[J]. Environmental Science and Pollution Research, 2018, 25: 5318-5335. DOI:10.1007/s11356-017-1071-2
doi: 10.1007/s11356-017-1071-2
20 MAUCIERI C, SALVATO M, BORIN M. Vegetation contribution on phosphorus removal in constructed wetlands[J]. Ecological Engineering, 2020, 152: 105853. DOI:10.1016/j.ecoleng.2020. 105853
doi: 10.1016/j.ecoleng.2020. 105853
21 NITTAMI T, MUKAI M, UEMATSU K, et al. Effects of different carbon sources on enhanced biological phosphorus removal and "Candidatus Accumulibacter" community composition under continuous aerobic condition[J]. Applied Microbiology & Biotechnology, 2017, 101: 8607-8619. DOI:10.1007/s00253-017-8571-3
doi: 10.1007/s00253-017-8571-3
22 ROY S, QIU G, ZUNIGA-MONTANEZ R, et al. Recent advances in understanding the ecophysiology of enhanced biological phosphorus removal[J]. Current Opinion in Biotechnology, 2021, 67: 166-174. DOI:10.1016/j.copbio.2021.01.011
doi: 10.1016/j.copbio.2021.01.011
23 韦佳敏, 黄慧敏, 程诚, 等. 污泥龄及pH值对反硝化除磷工艺效能的影响[J]. 环境科学, 2019, 40(4): 1900-1905. DOI:10.13227/j.hjkx.201808063
WEI J M, HUANG H M, CHENG C, et al. Effect of sludge retention time and pH on the denitrifying phosphorus removal process[J]. Environmental Science, 2019, 40(4): 1900-1905. DOI:10.13227/j.hjkx.201808063
doi: 10.13227/j.hjkx.201808063
24 巩有奎, 冯华, 任丽芳, 等. pH调控反硝化除磷过程PAOs-GAOs竞争及N2O释放特性[J]. 环境科学与技术, 2021, 44(7): 145-153. DOI:10.19672/j.cnki.1003-6504.2079.20.338
GONG Y K, FENG H, REN L F, et al. Utilization of pH to regulate the PAOs-GAOs competition and N2O release in denitrification phosphorus removal process[J]. Environmental Science & Technology, 2021, 44(7): 145-153. DOI:10.19672/j.cnki.1003-6504.2079.20.338
doi: 10.19672/j.cnki.1003-6504.2079.20.338
25 任皓甜, 袁林江. 磷酸盐浓度及pH对聚磷菌吸磷能力的影响[J]. 工业微生物, 2018, 48(4): 17-23. DOI:10.3969/j.issn.1001-6678.2018.04.004
REN H T, YUAN L J. Effects of phosphate concentration and pH on phosphorus uptake by phosphorus-accumulating bacteria[J]. Industrial Microbiology, 2018, 48(4): 17-23. DOI:10.3969/j.issn.1001-6678.2018.04.004
doi: 10.3969/j.issn.1001-6678.2018.04.004
26 ZHAO Z M, SONG X S, XIAO Y P, et al. Influences of seasons, N/P ratios and chemical compounds on phosphorus removal performance in algal pond combined with constructed wetlands[J]. Science of the Total Environment, 2016, 573: 906-914. DOI:10.1016/j.scitotenv.2016.08.148
doi: 10.1016/j.scitotenv.2016.08.148
27 CHEN H B, WANG D B, LI X N, et al. Temperature influence on biological phosphorus removal induced by aerobic/extended-idle regime[J]. Environmental Science and Pollution Research, 2014, 21(9): 6034-6043. DOI:10.1007/s11356-014-2547-y
doi: 10.1007/s11356-014-2547-y
28 潘俊, 孙舶洋, 魏炜, 等. 微纳米曝气-生态浮岛联合技术处理氮磷污染水体[J]. 环境工程, 2020, 38(5): 49-53. DOI:10.13205/j.hjgc.202005009
PAN J, SUN B Y, WEI W, et al. Experiment of micro-polluted water treatment by combined technology of micro-nano aeration-ecological floating wetland[J]. Environmental Engineering, 2020, 38(5): 49-53. DOI:10.13205/j.hjgc.202005009
doi: 10.13205/j.hjgc.202005009
No related articles found!