Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (5): 580-587    DOI: 10.3785/j.issn.1008-9497.2023.05.009
物理学     
聚电解质链在柱状受限下的构象转变
高菊先(),丁斌远,何林李()
温州大学 数理学院,浙江 温州 325035
The configurational transition of polyelectrolyte chain confined in a cylinder
Juxian GAO(),Binyuan DING,Linli HE()
Department of Physics,Wenzhou University,Wenzhou 325035,Zhejiang Province,China
 全文: PDF(1811 KB)   HTML( 2 )
摘要:

采用粗粒化分子动力学模拟方法,研究了受限于圆柱体内的聚电解质链的构象行为。通过计算链平均回旋半径、平均持久长度和平均形状因子等物理量,重点探究反离子价态、链刚性和受限孔径等对聚电解质链尺寸和构象转变的影响。结果表明,受限聚电解质链可形成稳定的棒状、球状、折叠链状和环状结构。尤其在三价反离子诱导下,半刚性聚电解质链可形成稳定的环状结构,并由切向相关函数表征。通过统计反离子分布,进一步探讨了聚电解质链和离子凝结的机制。同时讨论了环的成核和生长动力学特征,为进一步揭示生物大分子在有限空间内的构象行为提供了理论指导。

关键词: 分子动力学受限链刚性反离子价态构象转变    
Abstract:

The configurational transition of polyelectrolyte chain confined in a cylinder was studied by means of coarse-grained molecular dynamics simulation. Specifically, the effects on the size and configuration transition of polyelectrolyte chain under the parameters of counterion valence, chain stiffness and confinement radius were studied by calculating the average radius of gyration, average persistence length, and average shape factor. It has been found that there are stable rod-like, globular, folded-chain and ring structures in confined space. In the case of trivalent counterions, the polyelectrolyte chain with moderate stiffness forms a stable ring structure, which can be well characterized by a tangent correlation function. The mechanism of condensation of polyelectrolyte chain and counterion is further explored by statistical analysis of polyelectrolyte chain and counterions distribution. Finally, the kinetic characteristics of the nucleation and growth of the ring structure are discussed, and the results agree with the experimental results. The results can provide a deep insight about the configurational behaviors of biological macromolecules in confined spaces.

Key words: molecular dynamics    confinement    chain stiffness    counterion valences    configuration transition
收稿日期: 2022-10-20 出版日期: 2023-09-16
CLC:  O 469  
基金资助: 国家自然科学基金资助项目(22273067)
通讯作者: 何林李     E-mail: 20451025005@stu.wzu.edu.cn;linlihe@wzu.edu.cn
作者简介: 高菊先(1996—),ORCID:https://orcid.org/0000-0002-1543-9177,女,硕士研究生,主要从事高分子物理研究,E-mail: 20451025005@stu.wzu.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高菊先
丁斌远
何林李

引用本文:

高菊先,丁斌远,何林李. 聚电解质链在柱状受限下的构象转变[J]. 浙江大学学报(理学版), 2023, 50(5): 580-587.

Juxian GAO,Binyuan DING,Linli HE. The configurational transition of polyelectrolyte chain confined in a cylinder. Journal of Zhejiang University (Science Edition), 2023, 50(5): 580-587.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.05.009        https://www.zjujournals.com/sci/CN/Y2023/V50/I5/580

图1  受限于孔径R=10的圆柱体内不同链刚性下的聚电解质链
图2  受限在不同孔径圆柱体内的柔性聚电解质链(b=0)
图3  受限在不同孔径圆柱体内的弱刚性聚电解质链(b=20)
图4  受限在不同孔径圆柱体内的半刚性聚电解质链(b=60)
图5  不同受限孔径和链刚性下聚电解质链的构象相图注 O表示收缩状态,X表示伸展状态。
图6  当R=10时聚电解质链的中和程度f随链刚性的变化
图7  当R=10时在三价反离子诱导下u(1)⋅u(s)随聚电解质链单元体编号s变化的振荡曲线
图8  半刚性聚电解质链(b=60)在三价反离子诱导下环结构形成的动力学过程
1 LUAN B Q, STOLOVITZKY G, MARTYNA G. Slowing and controlling the translocation of DNA in a solid-state nanopore[J]. Nanoscale, 2012, 4(4): 1068-1077. DOI:10.1039/c1nr11201e
doi: 10.1039/c1nr11201e
2 LUAN B Q, PENG H B, POSSNAGEL S, et al. Base-by-base ratcheting of single stranded DNA through a solid-state nanopore[J]. Physical Review Letters, 2010, 104(23): 238103. DOI:10.1103/PhysRevLett.104.238103
doi: 10.1103/PhysRevLett.104.238103
3 POLONSKY S, ROSSNAGEL S, STOLOVITZKY G. Nanopore in metal-dielectric sandwich for DNA position control[J]. Applied Physics Letters, 2007, 91(15): 153103. DOI:10.1063/1.2798247
doi: 10.1063/1.2798247
4 SANTOS A P, GIROTTO M, LEVIN Y. Simulations of polyelectrolyte adsorption to a dielectric like-charged surface[J]. The Journal of Physical Chemistry, 2016, 120(39): 10387-10393. DOI:10.1021/acs.jpcb.6b06002
doi: 10.1021/acs.jpcb.6b06002
5 BUYUKDAGLI S, BLOSSEY R. Correlation-induced DNA adsorption on like-charged membranes[J]. Physical Review E, 2016, 94(4): 042502. DOI:10. 1103/PhysRevE.94.042502
doi: 10. 1103/PhysRevE.94.042502
6 MARTIN-MOLINA A, LUQUE-CABALLERO G, FARAUDO J, et al. Adsorption of DNA onto anionic lipid surfaces[J]. Advances in Colloid and Interface Science, 2014, 206: 172-185. DOI:10.1016/j.cis.2013.11.005
doi: 10.1016/j.cis.2013.11.005
7 WANG M H, JANOUT V, REGEN S L. Gas transport across hyperthin membranes[J]. Accounts of Chemical Research, 2013, 46: 2743-2754. DOI:10.1021/ar3002624
doi: 10.1021/ar3002624
8 BROEK B, LOMHOLT M A, KALISCH S-M J, et al. How DNA coiling enhances target localization by proteins[J]. Proceedings of National Academy of Sciences of the United States of America, 2008, 105(41): 15738-15742. DOI:10.1073/pnas.0804248105
doi: 10.1073/pnas.0804248105
9 GOWERS D M, HALFORD S E. Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling[J]. The EMBO Journal, 2003, 22(6): 1410-1418. DOI:10. 1093/emboj/cdg125
doi: 10. 1093/emboj/cdg125
10 HARBISON C T, GORDON D B, LEE T I, et al. Transcriptional regulatory code of a eukaryotic genome [J]. Nature, 2004, 431(7004): 99-104. DOI:10.1038/nature02800
doi: 10.1038/nature02800
11 MILCHEV A, BINDER K. Adsorption of semiflexible polymers in cylindrical tubes[J]. Langmuir, 2021, 37(40): 11759-11770. DOI:10. 1021/acs.langmuir.1c01715
doi: 10. 1021/acs.langmuir.1c01715
12 MILCHEV A, BINDER K. Cylindrical confinement of solutions containing semiflexible macromolecules: Surface-induced nematic order versus phase separation[J]. Soft Matter, 2021, 17(12): 3443-3454. DOI:10.1039/d1sm00172h
doi: 10.1039/d1sm00172h
13 WANG H C, GU L Y, TAN R R, et al. Macromolecule crowding effects on the phase separation of semi-flexible polymer in spherical confined space[J]. Journal of Biological Physics, 2020, 46(2): 223-231. DOI:10.1007/s10867-020-09550-9J
doi: 10.1007/s10867-020-09550-9J
14 CAO X L, ZHANG B J, ZHAO N R. Crowding-activity coupling effect on conformational change of a semi-flexible polymer[J]. Polymers, 2019, 11(6): 1021. DOI:10.3390/polym11061021
doi: 10.3390/polym11061021
15 MILCHEV A, EGOROV S A, VEGA D A, et al. Densely packed semiflexible macromolecules in a rigid spherical capsule[J]. Macromolecules, 2018, 51(5): 2002-2016. DOI:10.1021/acs.macromol.7b02643
doi: 10.1021/acs.macromol.7b02643
16 NIKOUBASHMAN A, VEGA D A, BINDER K, et al. Semiflexible polymers in spherical confinement: Bipolar orientational order versus tennis ball states[J]. Physical Review Letters, 2017, 118(21): 217803. doi:10.1103/physrevlett.118.217803
doi: 10.1103/physrevlett.118.217803
17 MILCHEV A, EGOROV S A, NIKOUBASHMAN A, et al. Conformations and orientational ordering of semiflexible polymers in spherical confinement[J]. The Journal of Chemical Physics, 2017, 146(19): 194907. DOI:10.1063/1.4983131
doi: 10.1063/1.4983131
18 GORDIEVSKAYA Y D, GAVRILOV A A, KRAMARENKO E Y. Effect of counterion excluded volume on the conformational behavior of polyelectrolyte chains[J]. Soft Matter, 2018, 14(8): 1474-1481. DOI:10.1039/c7sm02335a
doi: 10.1039/c7sm02335a
19 LIU L J, CHEN W D, CHEN J Z. Shape and diffusion of circular polyelectrolytes in salt-free dilute solutions and comparison with linear polyelectrolytes[J]. Macromolecules, 2017, 50(17): 6659-6667. DOI:10.1021/acs.macromol.7b00189
doi: 10.1021/acs.macromol.7b00189
20 NUNES S C, SKEPO M, PAIS A A. Confined polyelectrolytes: The complexity of a simple system[J]. Journal of Computational Chemistry, 2015, 36(21): 1579-1586. DOI:10.1002/jcc.23969
doi: 10.1002/jcc.23969
21 WANG Y W, TREE D R, DORFMAN K D. Simulation of DNA extension in nanochannels[J]. Macromolecules, 2011, 44(16): 6594-6604. DOI:10.1021/ma201277e
doi: 10.1021/ma201277e
22 JEON J, CHUN M S. Structure of flexible and semiflexible polyelectrolyte chains in confined spaces of slit micro/nanochannels[J]. The Journal of Chemical Physics, 2007, 126(15): 154904. DOI:10.1063/1.2723091
doi: 10.1063/1.2723091
23 TOM A M, VEMPARALA S, RAJESH R, et al. Mechanism of chain collapse of strongly charged polyelectrolytes[J]. Physical Review Letters, 2016, 117(14): 147801. DOI:10.1103/physrevlett.117. 147801
doi: 10.1103/physrevlett.117. 147801
24 JEON J, DOBRYNIN A V. Necklace globule and counterion condensation[J]. Macromolecules, 2007, 40(21): 7695-7706. DOI:10.1021/ma071005k
doi: 10.1021/ma071005k
25 MUTHUKUMAR M. Theory of counterion condensation on flexible polyelectrolytes: Adsorption mechanism[J]. The Journal of Chemical Physics, 2004, 120(19): 9343-9350. DOI:10.1063/1.1701839
doi: 10.1063/1.1701839
26 HUBER F, STREHLE D, KAS J. Counterion-induced formation of regular actin bundle networks[J]. Soft Matter, 2012, 8(4): 931-936. DOI:10.1039/c1sm06019h
doi: 10.1039/c1sm06019h
27 YANG Z Y, HE L L, ZHANG L X. Perfect helical structure of semiflexible polyelectrolyte chain confined in a cylinder[J]. Polymer, 2021, 218: 123499. DOI:10.1016/j.polymer.2021.123499
doi: 10.1016/j.polymer.2021.123499
28 TOM A M, RAJESH R, VEMPARALA S. Aggregation dynamics of rigid polyelectrolytes[J]. The Journal of Chemical Physics, 2016, 144(3): 034904. DOI:10.1063/1.4939870
doi: 10.1063/1.4939870
29 DESERNO M, HOLM C. How to mesh up Ewald sums I: A theoretical and numerical comparison of various particle mesh routines[J]. The Journal of Chemical Physics, 1998, 109(18): 7678-7693. DOI:10.1063/1.477414
doi: 10.1063/1.477414
30 DESERNO M, HOLM C. How to mesh up Ewald sums II: An accurate error estimate for the particle-particle-particle-mesh algorithm[J]. The Journal of Chemical Physics, 1998. 109(18): 7694-7701. DOI:10.1063/1.477415
doi: 10.1063/1.477415
31 PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. DOI:10.1006/jcph. 1995.1039
doi: 10.1006/jcph. 1995.1039
32 CIFRA P. Differences and limits in estimates of persistence length for semi-flexible macromolecules[J]. Polymer, 2004, 45(17): 5995-6002. DOI:10.1016/j.polymer.2004.06.034
doi: 10.1016/j.polymer.2004.06.034
33 JIANG Y W, ZHANG D, ZHANG Y Y, et al. The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions[J]. The Journal of Chemical Physics, 2014, 140(20): 204912. DOI:10.1063/1.4878508
doi: 10.1063/1.4878508
34 HU S Q, RAN S Y. Single molecular chelation dynamics reveals that DNA has a stronger affinity toward Lead(Ⅱ) than Cadmium(Ⅱ)[J]. The Journal of Physical Chemistry B, 2022, 126(9): 1876-1884. DOI:10.1021/acs.jpcb.1c10487
doi: 10.1021/acs.jpcb.1c10487
35 BESTEMAN, VAN EIJK K, LEMAY S G, et al. Charge inversion accompanies DNA condensation by multivalent ions[J]. Nature Physics, 2007, 3(9): 641-644. DOI:10.1038/nphys697
doi: 10.1038/nphys697
[1] 龚书楠,胡婷媛,谢文惠,何林李,王向红. 二元环/线高分子在纳米棒界面区域的吸附行为[J]. 浙江大学学报(理学版), 2022, 49(6): 698-705.
[2] 李丰庆, 何林李. 链刚性和剪切场对纳米棒在纳米复合体系中分布和取向的影响[J]. 浙江大学学报(理学版), 2021, 48(6): 694-699.
[3] 张乾, 吴骥, 余胜东, 王向红. 线性三嵌段共聚物格点薄膜受限下的自组装[J]. 浙江大学学报(理学版), 2018, 45(6): 707-713.
[4] 宋青亮, 王向红. 纳米复合体系中环形高分子链的构型[J]. 浙江大学学报(理学版), 2018, 45(5): 562-568.
[5] 周晓莉, 张丰, 杜震洪, 曹敏杰, 刘仁义. 基于CRBM算法的时间序列预测模型研究[J]. 浙江大学学报(理学版), 2016, 43(4): 442-451.
[6] 汪冒君, 宣南霞, 吴 军. 乙酰乳酸合成酶与抑制剂ZJ0777及CIE的分子对接和分子动力学模拟[J]. 浙江大学学报(理学版), 2015, 42(6): 709-713.