Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (5): 597-606    DOI: 10.3785/j.issn.1008-9497.2023.05.011
地球科学     
细粒沉积岩有机质-矿物-孔隙在升温过程中的变化及其规律
尹玲芝1(),蒲秀刚2,陈世悦1(),鄢继华1,张伟2
1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
2.中国石油天然气股份有限公司 大港油田勘探开发研究院,天津 300280
Changes and regularities of organic matter mineral pore in fine-grained sedimentary rocks during temperature rise: A case study of fine-grained sedimentary rocks in kong 2 member of Cangdong sag
Lingzhi YIN1(),Xiugang PU2,Shiyue CHEN1(),Jihua YAN1,Wei ZHANG2
1.School of Geosciences and Technology,China University of Petroleum (East China),Qingdao 266580,Shandong Province,China
2.Research Institute of Exploration and Development of Dagang Oilfield,PetroChina Company Limited,Tianjin 300280,China
 全文: PDF(8798 KB)   HTML( 1 )
摘要:

在埋藏过程中,随着埋深的增加,细粒沉积岩的矿物组成、有机质形态、孔隙类型与质量分数等会发生一系列变化。为揭示其变化规律,对有机质热模拟的残样进行了扫描电镜、全岩X射线衍射、镜质体反射率(Ro)、岩石热解、有机碳质量分数等测试。发现在从室温(25 ℃)到550 ℃的升温过程中,有机质形态由团块状向条带状、团块状变化;黏土矿物由层片状逐渐向絮状转化;碳酸盐矿物溶蚀加剧,温度超过500 ℃后,出现溶蚀-沉淀现象;随着温度的升高,由有机质热演化产生的有机质孔的面积不断增加,在450~475 ℃时,有机质孔孔径达最大,当温度高于475 ℃后,有机质孔的数量增多、孔径缩小;由于随着温度的升高黏土矿物由蒙脱石向伊蒙混层再向伊利石转化,导致其晶间孔先缓慢增加后迅速增加最后趋于稳定;溶蚀孔主要由长石和碳酸盐矿物产生,与有机质热演化产生的有机酸密切相关,溶蚀孔的变化趋势与有机质孔的变化趋势基本一致,先缓慢增加后迅速增加随后又缓慢下降趋于稳定。当温度为450~475 ℃时,孔隙数量达最多、孔径最大,形成良好的储层。

关键词: 细粒沉积岩热模拟有机质矿物孔隙    
Abstract:

During the burial process of fine-grained sedimentary rocks, with the increase of burial depth, a series of changes will occur in their mineral composition, organic matter morphology, pore type and content. In order to deeply reveal the characteristics of these changes, we tested the residual samples of organic matter thermal simulation by scanning electron microscopy, whole rock X-ray diffraction, vitrinite reflectance (Ro), rock pyrolysis and organic carbon content. It was found that the forms of organic matter changed from lump-banded to lump-like when the temperature increased from room temperature to 550 ℃. Clay minerals gradually transformed from lamellar to flocculent; the dissolution of carbonate minerals was dramatic, and the dissolution-precipitation phenomenon occured when the temperature was higher than 500 ℃. With the increase of temperature, the area of organic pores produced by thermal evolution of organic matter increased continuously. At 450-475 ℃, the organic pores reached the maximum, but when the temperature is higher than 475 ℃, the number and pore size of organic pores will decrease. As the clay minerals transformed from montmorillonite to illite-montmorillonite mixed layer and then to illite following the increase of temperature, the intergranular pores of clay minerals increase slowly at first, then increased rapidly and finally tended to be stable. The dissolution pores were mainly produced by feldspar and carbonate minerals, which were closely related to the organic acids produced by the thermal evolution of organic matter. Therefore, the change trend of dissolution pores is basically the same as that of organic matter pores, which increases slowly first and then increases rapidly, and then decreases slowly and tends to be stable. So the temperature range of 450-475 ℃, during which the number of pores and pore size are the largest, is a good reservoir.

Key words: fine grained sedimentary rock    thermal simulation    organic matter    minerals    pore
收稿日期: 2022-09-20 出版日期: 2023-09-16
CLC:  TE 143  
基金资助: 国家自然科学基金资助项目(41572087)
通讯作者: 陈世悦     E-mail: YINLINGZHI1998@163.com;chenshiyue@vip.sina.com
作者简介: 尹玲芝(1998—),ORCID: https://orcid.org/0000-0002-7920-5310,女,硕士研究生,主要从事非常规油气地质学研究,E-mail:YINLINGZHI1998@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
尹玲芝
蒲秀刚
陈世悦
鄢继华
张伟

引用本文:

尹玲芝,蒲秀刚,陈世悦,鄢继华,张伟. 细粒沉积岩有机质-矿物-孔隙在升温过程中的变化及其规律[J]. 浙江大学学报(理学版), 2023, 50(5): 597-606.

Lingzhi YIN,Xiugang PU,Shiyue CHEN,Jihua YAN,Wei ZHANG. Changes and regularities of organic matter mineral pore in fine-grained sedimentary rocks during temperature rise: A case study of fine-grained sedimentary rocks in kong 2 member of Cangdong sag. Journal of Zhejiang University (Science Edition), 2023, 50(5): 597-606.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.05.011        https://www.zjujournals.com/sci/CN/Y2023/V50/I5/597

图1  取样位置及岩心、薄片照片
图2  不同温度下有机质的特征
图3  不同温度下黏土矿物的特征
图4  不同温度下长石的特征
图5  不同温度下碳酸盐矿物的特征
图6  细粒沉积岩有机质-矿物-孔隙在升温过程中的变化模式
图7  基于热模拟实验的细粒沉积岩成岩过程中矿物、有机质和孔隙的演化模式注 基于热模拟实验结果绘制,供实际应用时参考。
1 DUTTON S P, LOUCKS R G, DAY-STIRRAT R J. Impact of regional variation in detrital mineral composition on reservoir quality in deep to ultradeep lower Micene sandstones, western Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 35(8): 139-153. DOI:10.1016/j.marpetgeo.2012.01.006
doi: 10.1016/j.marpetgeo.2012.01.006
2 JOE H S, MACQUAKER K G, TAYLOR M K, et al. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones[J]. AAPG Bulletin, 2014, 98(3): 587-603. DOI:10.1306/08201311176
doi: 10.1306/08201311176
3 罗静兰, 罗晓容, 白玉彬, 等. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响: 以鄂尔多斯盆地西南部长7致密浊积砂岩储层为例[J]. 地球科学与环境学报, 2016, 38(1): 79-92.DOI:10.3969/j.issn.1672-6561.2016.01.008
LUO J L, LUO X R, BAI Y B, et al. Impact of differential diagenetic evolution the chronological tightening and pore evolution of tight sandstone reservoirs: A case study from the Chang 7 tight turbidite sandstone reservoir in the Southwestern Ordos Basin[J]. Journal of Earth Sciences and Environment, 2016, 38(1): 79-92. DOI:10.3969/j.issn.1672-6561.2016.01.008
doi: 10.3969/j.issn.1672-6561.2016.01.008
4 胡贺伟, 李慧勇, 于海波, 等. 渤海湾盆地埕北低凸起及围区古近系“源-汇”系统控砂原理定量分析[J]. 古地理学报, 2020, 22(2): 266-277. DOI:10.7605/gdlxb.2020.10.238
HU H W, LI H Y, YU H B, et al. Quantitative analysis of source-to-sink system controls on sand-body distribution of the Paleogene in Chengbei low uplift and surrounding areas, Bohai Bay Basin[J]. Journal of Palaeogeography(Chinese Edition), 2020, 22(2): 266-277. DOI:10.7605/gdlxb.2020. 10.238
doi: 10.7605/gdlxb.2020. 10.238
5 HAN D L, LI M, LI Z, et al. Sealing features of fluid-rock system and its control on acidic dissolution in Cretaceous sandstone reservoirs, Kuqa Subbasin[J]. Acta Geologica Sinica, 2015, 89(4): 1296-1306. DOI:10.1111/1755-6724.12529
doi: 10.1111/1755-6724.12529
6 李忠. 盆地深层流体:岩石作用与油气形成研究前沿[J]. 矿物岩石地球化学通报, 2016, 35(5): 807-816. DOI:10.3969/j.issn.1007-2802.2016.05.001
LI Z. Research frontiers of fluid-rock interaction and oil-gas formation in deep-buried basins[J]. Mineral Rock Geochemical Bulletin, 2016, 35(5): 807-816. DOI:10.3969/j.issn.1007-2802.2016.05.001
doi: 10.3969/j.issn.1007-2802.2016.05.001
7 ZHAO F, HE W Y, HUANG C G, et al . Saline fluid interaction experiment in clastic reservoir of lacustrine basin[J]. Carbonates and Evaporites, 2017, 32: 167-175. DOI:10.1007/s13146-016-0289-2
doi: 10.1007/s13146-016-0289-2
8 李忠, 罗威, 曾冰艳, 等. 盆地多尺度构造驱动的流体:岩石作用及成储效应[J]. 地球科学, 2018, 43(10): 3498-3510. DOI:10.3799/dqkx.2018.323
LI Z, LUO W, ZENG B Y, et al. Fluid-rock interactions and reservoir formation driven by multiscale structural deformation in basin evolution[J]. Geological Science, 2018, 43(10): 3498-3510. DOI:10.3799/dqkx.2018.323
doi: 10.3799/dqkx.2018.323
9 陈红汉. 单个油包裹体显微荧光特性与热成熟度评价[J]. 石油学报, 2014, 35(3): 584-590. DOI:10. 7623/syxb201403023
CHEN H H. Microspector fluorimetric characterization and thermal maturity assessment of individual oil inclusion[J]. Acta Petrolei Sinica, 2014, 35(3): 584-590. DOI:10.7623/syxb201403023
doi: 10.7623/syxb201403023
10 平宏伟, 陈红汉, THIÉRY R, 等. 原油裂解对油包裹体均一温度和捕获压力的影响及其地质意义[J]. 地球科学(中国地质大学学报), 2014, 39(5): 587-600. DOI:10.3799/dqkx.2014.056
PING H W, CHEN H H, THIÉRY R, et al. Effects of oil cracking on homogenization temperature and trapping pressure of oil inclusion and its geological significance[J]. Earth Science(Journal of China University of Geosciences), 2014, 39(5): 587-600. DOI:10.3799/dqkx.2014.056
doi: 10.3799/dqkx.2014.056
11 斯尚华, 陈红汉, 袁丙龙, 等. 利用油包裹体荧光光谱多参数划分油气充注幕次: 以塔里木盆地麦盖提斜坡巴什托构造带石炭系为例[J]. 海相油气地质, 2018, 23(2): 25-30. DOI:10.3969/j.issn.1672-9854.2018.02.004
SI S H, CHEN H H, YUAN B L, et al. Identification of hydrocarbon charging events by using fluorescence spectrum multiparameter of oil inclusions: A case study of carboniferous in Bashituo structural belt of Markit slope of Tarim Basin[J]. Marine Origin Petroleum Geology, 2018, 23(2): 25-30. DOI:10.3969/j.issn.1672-9854.2018.02.004
doi: 10.3969/j.issn.1672-9854.2018.02.004
12 李文, 何生, 张柏桥, 等. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018, 39(4): 402-415. DOI:10.7623/syxb201804004
LI W, HE S, ZHANG B Q, et al. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi formation at the western margin of Jiaoshiba anticline[J]. Acta Petrolei Sinica, 2018, 39(4): 402-415. DOI:10.7623/syxb201804004
doi: 10.7623/syxb201804004
13 栾国强, 董春梅, 马存飞, 等. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征[J]. 沉积学报, 2016, 34(6): 1208-1216. DOI:10.14027/j.cnki.cjxb. 2016.06.018 .
LUAN G Q, DONG C M, MA C F, et al. Diagenesis and evolution characteristics of organic rich shale based on thermal simulation experiments[J]. Journal of Sedimentation, 2016, 34 (6): 1208-1216. DOI:10.14027/j.cnki.cjxb.2016.06.018
doi: 10.14027/j.cnki.cjxb.2016.06.018
14 董春梅, 马存飞, 栾国强, 等. 泥页岩热模拟实验及成岩演化模式[J]. 沉积学报, 2015, 33(5): 1053-1061. DOI:10.14027/j.cnki.cjxb.2015.05.021 .
DONG C M, MA C F, LUAN G Q, et al. Thermal simulation experiment and diagenetic evolution model of shale[J]. Journal of Sedimentation, 2015, 33(5): 1053-1061. DOI:10.14027/j.cnki.cjxb.2015. 05.021 .
doi: 10.14027/j.cnki.cjxb.2015. 05.021
15 刘小平, 李文奇. 基于热模拟实验的富有机质泥页岩孔隙演化研究进展[J]. 科学技术与工程,2020,20(22):8849-8859. DOI:10.3969/j.issn.1671-1815. 2020.22.002
LIU X P, LI W Q. Research progress on pore evolution of organic rich shale based on thermal simulation experiment [J]. Science, Technology and Engineering, 2020, 20 (22): 8849-8859. DOI:10. 3969/j.issn.1671-1815.2020.22.002
doi: 10. 3969/j.issn.1671-1815.2020.22.002
16 SHAO D, ZHANG T, KO L T, et al. Empirical plot of gas generation from oil-prone marine shales at different maturity stages and its application to assess gas preservation in organic-rich shale system[J]. Marine and Petroleum Geology, 2019, 102:258-270. DOI:10.1016/j.marpetgeo.2018.12.044 .
doi: 10.1016/j.marpetgeo.2018.12.044
17 SHI M, YU B, ZHANG J, et al. Evolution of organic pores in marine shales undergoing thermocompression: A simulation experiment using hydrocarbon generation and expulsion[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 406-413. DOI:10.1016/j.jngse.2018.09.008
doi: 10.1016/j.jngse.2018.09.008
18 赵康安. 开放体系下油页岩热模拟储集空间演化研究[D]. 长春: 吉林大学, 2020. DOI:10.27162/d.cnki.gjlin.2020.007070 .
ZHAO K A. Study on Thermal Simulation and Reservoir Spatial Evolution of Oil Shale under Open System[D]. Changchun: Jilin University, 2020. DOI:10.27162/d.cnki.gjlin.2020.007070 .
doi: 10.27162/d.cnki.gjlin.2020.007070
19 周西亚. 湖相页岩生烃过程中的孔隙演化[D]. 北京: 中国石油大学, 2016.
ZHOU X Y. Pore Evolution during Hydrocarbon Generation of Lacustrine Shale[D]. Beijing: China University of Petroleum, 2016.
20 HUNT J. Petroleum Geochemistry and Geology[M]. New York: Freeman and Company, 1996.
21 TISSOT B P, WELTE D H .Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration[M]. Berlin: Springer-Verlag, 1978.
22 KO L T, LOUCKS R G, ZHANG T, et al. Pore and pore network evolution of upper cretaceous Boquillas (eagle ford-equivalent) mudrocks: Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100 (11): 1693-1722. DOI:10.1306/04151615092
doi: 10.1306/04151615092
23 王飞腾, 郭少斌, 毛文静, 等. 基于热模拟实验的泥页岩黏土矿物演化及成岩阶段划分[J]. 科学技术与工程, 2018, 18(12): 174-179. DOI:10.3969/j.issn.1671-1815.2018.12.028
WANG F T, GUO S B, MAO W J, et al. Clay mineral evolution and diagenesis stage division of shale based on thermal simulation experiments[J]. Science, Technology and Engineering, 2018, 18(12): 174-179. DOI:10.3969/j.issn.1671-1815. 2018.12.028
doi: 10.3969/j.issn.1671-1815. 2018.12.028
24 徐传正, 冯烁, 田继军, 等. 龙马溪组岩相类型及其对孔隙特征的影响因素[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 51-60. DOI:10.11885/j.issn.1674-5086.2019.05.04.01
XU C Z, FENG S, TIAN J J, et al. Lithofacies types of Longmaxi formation and their influencing factors on pore characteristics [J]. Journal of Southwest Petroleum University(Natural Science Edition), 2021, 43 (1): 51-60. DOI:10.11885/j.issn.1674-5086.2019.05.04.01
doi: 10.11885/j.issn.1674-5086.2019.05.04.01
25 温佳楠. 渤海湾盆地典型地区古近系湖相页岩孔隙发育演化特征[D]. 北京: 中国石油大学, 2018. DOI:10.27643/d.cnki.gsybu.2018.001521 .
WEN J N. Characteristics of Pore Development and Evolution of Paleogene Lacustrine Shale in Typical Areas of Bohai Bay Basin[D]. Beijing: China University of Petroleum, 2018. DOI:10.27643/d.cnki.gsybu.2018.001521
doi: 10.27643/d.cnki.gsybu.2018.001521
26 WU S, YANG Z, ZHAI X, et al. An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints[J]. Marine and Petroleum Geology, 2019, 102: 377-390. DOI:10.1016/j.marpetgeo.2018.12.014
doi: 10.1016/j.marpetgeo.2018.12.014
27 WANG F, GUO S. Influential factors and model of shale pore evolution: A case study of a continental shale from the Ordos Basin[J]. Marine and Petroleum Geology, 2019, 102: 271-282. DOI:10. 1016/j.marpetgeo.2018.12.045
doi: 10. 1016/j.marpetgeo.2018.12.045
28 于佳琦. 半开放体系下油页岩热模拟储集特征演化研究[D]. 长春: 吉林大学, 2021. DOI:10.27162/d.cnki.gjlin.2021.003509
YU J Q. Study on Thermal Simulation and Reservoir Characteristics Evolution of Oil Shale under Semi Open System[D]. Changchun: Jilin University, 2021. DOI:10.27162/d.cnki.gjlin.2021.003509
doi: 10.27162/d.cnki.gjlin.2021.003509
29 张顺, 刘惠民, 宋国奇, 等. 东营凹陷页岩油储集空间成因及控制因素[J].石油学报, 2016, 37(12): 1495-507. doi:10.7623/syxb201612005
ZHANG S, LIU H M, SONG G Q, et al. Genesis and control factors of shale oil reservoir space in Dongying sag[J]. Journal of Petroleum, 2016, 37(12): 1495-507 . doi:10.7623/syxb201612005
doi: 10.7623/syxb201612005
30 崔景伟, 朱如凯, 崔京钢. 页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据[J]. 地质学报, 2013, 87(5): 730-736. DOI:10.3969/j.issn.0001-5717.2013.05.010
CUI J W, ZHU R K, CUI J G. Shale pore evolution and its relationship with residual hydrocarbon content: Evidence from simulation experiments under the constraint of geological processes[J]. Journal of Geology, 2013, 87(5): 730-736. DOI:10.3969/j.issn.0001-5717.2013.05.010
doi: 10.3969/j.issn.0001-5717.2013.05.010
31 王阳. 上扬子区龙马溪组页岩微孔缝结构演化与页岩气赋存[D]. 徐州: 中国矿业大学, 2017.
WANG Y. Evolution of Pore Structure and Occurrence of Shale Gas in Longmaxi Formation of Upper Yangtze Region[D]. Xuzhou: China University of Mining and Technology, 2017.
[1] 徐圣嘉,苏程,朱孔阳,章孝灿. 基于深度学习的岩石薄片矿物自动识别方法[J]. 浙江大学学报(理学版), 2022, 49(6): 743-752.
[2] 黄冬琴,高秦,厉子龙,杨师航,洪晨,A M Piotrowski,孙淼军,李川. 晚更新世以来杭州湾沉积物黏土矿物特征及其古环境意义[J]. 浙江大学学报(理学版), 2022, 49(5): 584-597.
[3] 邱忠荣, 马维林, 张霄宇, 董彦辉, 章伟艳, 杨克红. 西北太平洋表层沉积物地球化学特征及其物源指示意义[J]. 浙江大学学报(理学版), 2020, 47(3): 345-354.
[4] 苏昕瑶, 厉子龙. 浙江玉环石峰山地区橄榄玄武岩中幔源包体的化学特征及其单斜辉石的“筛状结构”[J]. 浙江大学学报(理学版), 2019, 46(2): 248-259.
[5] 舒妙安. 棘胸蛙肌肉营养成分的分析Ⅱ.氨基酸及矿物元素的组成[J]. 浙江大学学报(理学版), 2000, 27(5): 553-559.