Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (5): 607-618    DOI: 10.3785/j.issn.1008-9497.2023.05.012
地球科学     
2000—2020年汾河流域生态脆弱性时空演变与驱动因素
王钰帆1(),白强2,孙虎1()
1.陕西师范大学 地理科学与旅游学院, 陕西 西安 710119
2.神木市自然资源和规划局,陕西 神木 719399
Spatial-temporal evolution and driving factors of ecological vulnerability in Fenhe River Basin from 2000 to 2020
Yufan WANG1(),Qiang BAI2,Hu SUN1()
1.School of Geography and Tourism,Shaanxi Normal University,Xi'an 710119,China
2.Shenmu Natural Resources and Planning Bureau,Shenmu 719399,Shaanxi Province,China
 全文: PDF(2708 KB)   HTML( 1 )
摘要:

采用“生态敏感性-生态恢复力-生态压力度”(SRP)评价模型,构建了汾河流域生态脆弱性评价指标体系;利用空间地理数据和主成分分析法,对2000—2020年汾河流域的生态脆弱性、时空分布特征及变化趋势进行了分析;同时借助地理探测器模型,探讨了流域生态脆弱性变化的驱动因素。结果表明:(1)汾河流域生态以中度脆弱为主,在空间上呈现“南高北低”的趋势,在时间上呈现先增加后降低态势,整体生态环境质量逐渐好转。(2)平原丘陵区、低山区生态脆弱性高,中山区次之,高中山区最低。近20 a间,平原丘陵区、低山区、高中山区生态脆弱性降低,中山区生态脆弱性有所增加。(3)影响汾河流域生态脆弱性的驱动因素多样化,在自然、人类活动和景观格局等因素中,土壤有机碳含量、土地利用程度和香农均匀度指数是其生态脆弱性空间分异的主要驱动因素。同时,在政策因素相对稳定的条件下,气候因素对生态脆弱性的影响程度逐步增强。所得结果可为汾河流域合理配置土地资源、保护和修复生态环境、实现高质量发展提供科学依据。

关键词: 生态脆弱性SRP评价模型空间主成分分析地理探测器汾河流域    
Abstract:

An ecological vulnerability evaluation index system based on the evaluation model of "sensitivity-recovery-pressure" (SRP) is constructed. By using spatial geographical data and spatial principal component analysis (SPAC), the ecological vulnerability status, its spatial-temporal distribution characteristics and change trend of Fenhe River Basin in recent 20 years are analyzed, the driving factors of ecological vulnerability change are also discussed by using geodetector. First, The results show that: (1) The overall ecological vulnerability of Fenhe River Basin was at a moderate level, and the vulnerability level in southern area is higher than that in the northern area. The ecological vulnerability first increased then decreased in the time period, indicating that the quality of ecological environment has changed better from 2000 to 2020. (2) The ecological vulnerability level of these zones, such as the plain, hilly and low mountain, was higher than that of the middle mountain zone, and it was at the lowest level in the high-middle mountain zones. During the past 20 years, the ecological vulnerability level of plain, hilly, low mountain and high-middle mountain zones has decreased, while it has rised on middle-middle mountain zones. (3) The driving factors affecting the ecological vulnerability of Fenhe River Basin are of diversity. Among these factors such as nature environment, human activities and landscape pattern, soil organic carbon contents, land use degree and Shannon's evenness index (SHEI) are the main factors contributing to the spatial differentiation of ecological vulnerability. Under a relatively stable policy of ecological protection, the impact of climate change factors on ecological vulnerability has increased gradually.

Key words: ecological vulnerability    SRP evaluation model    spatial principal component analysis    geodetector    Fenhe River Basin
收稿日期: 2022-07-29 出版日期: 2023-09-16
CLC:  X 826  
基金资助: 陕西省水利厅基金项目(201510085)
通讯作者: 孙虎     E-mail: 1270765972@qq.com;kycjh6@snnu.edu.cn
作者简介: 王钰帆(1997—),ORCID:https://orcid.org/0000-0002-5507-4977,女,硕士研究生,主要从事区域开发与环境治理研究,E-mail:1270765972@qq.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王钰帆
白强
孙虎

引用本文:

王钰帆,白强,孙虎. 2000—2020年汾河流域生态脆弱性时空演变与驱动因素[J]. 浙江大学学报(理学版), 2023, 50(5): 607-618.

Yufan WANG,Qiang BAI,Hu SUN. Spatial-temporal evolution and driving factors of ecological vulnerability in Fenhe River Basin from 2000 to 2020. Journal of Zhejiang University (Science Edition), 2023, 50(5): 607-618.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.05.012        https://www.zjujournals.com/sci/CN/Y2023/V50/I5/607

目标层准则层指标层指标项指标选取依据指标性质

生态

脆弱性

生态

敏感性

地形坡度(X1)诱发滑坡、泥石流等地质灾害和水土流失正向
地形起伏度(X2)正向
气候年平均气温(X3)影响生物的生长和生态系统多样性负向
年降水量(X4)影响植被生长、调节河流水量负向
干旱(X5)影响农作物产量和植被生长负向
水土流失降雨侵蚀力(X6)表征降雨对土壤潜在的侵蚀作用正向
土壤可蚀性(X7)表征土壤被降雨或地表径流等作用侵蚀的程度正向

生态

恢复力

生态系统功能距水体距离(X8)反映水源涵养作用正向
土壤有机碳含量(X9)影响土壤肥力、调节区域小气候负向
景观分布格局蔓延度指数(X10)表征景观连通性负向
香农均匀度指数(X11)表征景观多样性负向
植被覆盖归一化植被指数(X12)反映地表植被覆盖度负向

生态

压力度

人类活动干扰人口密度(X13)反映人类对生态环境的干扰程度正向
土地利用距建设用地距离(X14)反映人类活动梯度负向
景观破碎度(X15)以斑块密度表征景观破碎化程度正向
土地利用程度(X16)反映区域土地资源利用和组合方式正向
表1  汾河流域生态脆弱性评价指标体系
主成分特征值贡献率/%累计贡献率/%
2000年2010年2020年2000年2010年2020年2000年2010年2020年
PC10.0520.0520.05329.6032.8432.3229.6032.8432.32
PC20.0300.0250.03417.0815.9620.4446.6848.7952.76
PC30.0270.0240.02315.2814.9713.9561.9663.7666.70
PC40.0250.0210.01514.3113.048.8876.2776.8175.59
PC50.0110.0110.0106.246.746.3282.5183.5481.90
PC60.0070.0060.0064.003.813.8386.5187.3585.74
表2  空间主成分分析结果
图1  汾河流域生态脆弱性空间分布注 汾河流域边界基于DEM数据通过ArcGIS 10.2的水文分析提取。
图2  汾河流域生态脆弱性等级面积占比
图3  汾河流域生态脆弱性指数空间分布变化情况注 汾河流域边界基于DEM数据通过ArcGIS10.2的水文分析提取。
图4  汾河流域不同地貌生态脆弱性等级面积占比注 左柱为2000年、中柱为2010年、右柱为2020年。
指标因子2000年2010年2020年
qq值排序pqq值排序pqq值排序p
X10.28070.0000.20480.0000.183110.000
X20.28160.0000.190100.0000.155120.000
X30.34940.0000.35060.0000.52520.000
X40.144130.0000.141110.0000.51230.000
X50.146120.0000.130120.0000.45340.000
X60.178100.0000.20090.0000.54210.000
X70.19190.0000.23070.0000.37080.000
X80.028160.0000.031160.0000.036160.000
X90.27880.0000.40120.0000.43150.000
X100.29950.0000.37550.0000.194100.000
X110.51910.0000.56110.0000.37470.000
X120.050140.0000.058140.0000.050140.000
X130.034150.0000.037150.0000.049150.000
X140.169110.0000.103130.0000.111130.000
X150.47820.0000.39030.0000.33090.000
X160.46930.0000.38640.0000.41760.000
表3  汾河流域生态脆弱性因子探测结果
图5  汾河流域生态脆弱性交互探测结果注 * 表示非线性增强交互作用,其他为双因子增强交互作用。
1 田亚平, 常昊. 中国生态脆弱性研究进展的文献计量分析[J]. 地理学报, 2012, 67(11): 1515-1525. DOI:10.11821/xb201211008
TIAN Y P, CHANG H. Bibliometric analysis of research progress on ecological vulnerability in China[J]. Acta Geographica Sinica, 2012, 67(11): 1515-1525. DOI:10.11821/xb201211008
doi: 10.11821/xb201211008
2 徐广才, 康慕谊, 贺丽娜, 等. 生态脆弱性及其研究进展[J]. 生态学报, 2009, 29(5): 2578-2588. DOI:10.3321/j.issn:1000-0933.2009.05.047
XU G C, KANG M Y, HE L N, et al. Advances in research on ecological vulnerability[J]. Acta Ecologica Sinica, 2009, 29(5): 2578-2588. DOI:10. 3321/j.issn:1000-0933.2009.05.047
doi: 10. 3321/j.issn:1000-0933.2009.05.047
3 王志杰, 苏嫄. 南水北调中线汉中市水源地生态脆弱性评价与特征分析[J]. 生态学报, 2018, 38(2): 432-442. DOI:105846/stxb201609261944
WANG Z J, SU Y. Analysis of eco-environmental vulnerability characteristics of Hanzhong city, near the water source midway along the route of the south-to-north water transfer project, China[J]. Acta Ecologica Sinica, 2018, 38(2): 432-442. DOI:105846/stxb201609261944
doi: 105846/stxb201609261944
4 杨飞, 马超, 方华军. 脆弱性研究进展:从理论研究到综合实践[J]. 生态学报, 2019, 39(2): 441-453. DOI:10.5846/stxb201802020289
YANG F, MA C, FANG H J. Research progress on vulnerability: From theoretical research to comprehensive practice[J]. Acta Ecologica Sinica, 2019, 39(2): 441-453. DOI:10.5846/stxb201802020289
doi: 10.5846/stxb201802020289
5 陈萍, 陈晓玲. 全球环境变化下人—环境耦合系统的脆弱性研究综述[J]. 地理科学进展, 2010, 29(4): 454-462. DOI:10.11820/dlkxjz.2010.04.010
CHEN P, CHEN X L. Summary on research of coupled human—environment system vulnerability under global environmental change[J]. Progress in Geography, 2010, 29(4): 454-462. DOI:10.11820/dlkxjz.2010.04.010
doi: 10.11820/dlkxjz.2010.04.010
6 樊哲文, 刘木生, 沈文清. 江西省生态脆弱性现状GIS模型评价[J]. 地球信息科学学报, 2009, 11(2): 202-208. DOI:10.3969/j.issn.1560-8999.2009.02.011
FAN Z W, LIU M S, SHEN W Q. GIS-based assessment on eco-vulnerability of Jiangxi province[J]. Journal of Geo-Information Science, 2009, 11(2): 202-208. DOI:10.3969/j.issn.1560-8999.2009.02.011
doi: 10.3969/j.issn.1560-8999.2009.02.011
7 XUE L Q, WANG J, ZHANG L C, et al. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China[J]. Science of the Total Environment, 2019, 649: 876-888. DOI:10.1016/j.scitotenv.2018.08.321
doi: 10.1016/j.scitotenv.2018.08.321
8 马骏, 李昌晓, 魏虹, 等. 三峡库区生态脆弱性评价[J]. 生态学报, 2015, 35(21): 7117-7129. DOI:10.5846/stxb201309252364
MA J, LI C X, WEI H, et al. Dynamic evaluation of ecological vulnerability in the Three Gorges Reservoir Region in Chongqing Municipality, China[J]. Acta Ecologica Sinica, 2015, 35(21): 7117-7129. DOI:10.5846/stxb201309252364
doi: 10.5846/stxb201309252364
9 张学渊, 魏伟, 周亮, 等. 西北干旱区生态脆弱性时空演变分析[J]. 生态学报, 2021, 41(12): 4707-4719. DOI:10.5846/stxb202001020014
ZHANG X Y, WEI W, ZHOU L, et al. Analysis on spatio-temporal evolution of ecological vulnerability in arid areas of Northwest China[J]. Acta Ecologica Sinica, 2021, 41(12): 4707-4719. DOI:10.5846/stxb202001020014
doi: 10.5846/stxb202001020014
10 付刚, 白加德, 齐月, 等. 基于GIS的北京市生态脆弱性评价[J]. 生态与农村环境学报, 2018, 34(9): 830-839. DOI:10.11934/j.issn.1673-4831.2018. 09.009
FU G, BAI J D, QI Y, et al. Ecological vulnerability assessment in Beijing based on GIS spatial analysis[J]. Journal of Ecology and Rural Environment, 2018, 34(9): 830-839. DOI:10.11934/j.issn.1673-4831.2018. 09.009
doi: 10.11934/j.issn.1673-4831.2018. 09.009
11 张良侠, 樊江文, 张海燕, 等. 黄土高原地区生态脆弱性时空变化及其驱动因子分析[J]. 环境科学, 2022, 43(9): 4902-4910. DOI:10.13227/j.hjkx. 202110220
ZHANG L X, FAN J W, ZHANG H Y, et al. Spatial-temporal variations and their diving forces of the ecological vulnerability in the Loess Plateau[J]. Environmental Science, 2022, 43(9): 4902-4910. DOI:10.13227/j.hjkx.202110220
doi: 10.13227/j.hjkx.202110220
12 陈佳, 杨新军, 尹莎, 等. 基于VSD框架的半干旱地区社会生态系统脆弱性演化与模拟[J]. 地理学报, 2016, 71(7): 1172-1188. DOI:10.11821/dlxb201607007
CHEN J, YANG X J, YIN S, et al. The vulnerability evolution and simulation of the social-ecological systems in the semi-arid area based on the VSD framework[J]. Acta Geographica Sinica, 2016, 71(7): 1172-1188. DOI:10.11821/dlxb201607007
doi: 10.11821/dlxb201607007
13 LI Q, SHI X Y, WU Q Q. Effects of protection and restoration on reducing ecological vulnerability[J]. Science of the Total Environment, 2021, 761:143180. DOI:10.1016/j.scitotenv.2020.143180
doi: 10.1016/j.scitotenv.2020.143180
14 李永化, 范强, 王雪, 等. 基于SRP模型的自然灾害多发区生态脆弱性时空分异研究:以辽宁省朝阳县为例[J]. 地理科学, 2015, 35(11): 1452-1459. DOI:10.13249/j.cnki.sgs.2015.11.014
LI Y H, FAN Q, WANG X, et al. Spatial and temporal differentiation of ecological vulnerability under the frequency of natural hazard based on SRP model: A case study in Chaoyang county in Liaoning province[J]. Scientia Geographica Sinica, 2015, 35(11): 1452-1459. DOI:10.13249/j.cnki.sgs.2015. 11.014
doi: 10.13249/j.cnki.sgs.2015. 11.014
15 张金茜, 李红瑛, 曹二佳, 等. 多尺度流域生态脆弱性评价及其空间关联性:以甘肃白龙江流域为例[J]. 应用生态学报, 2018, 29(9): 2897-2906. DOI:10.13287/j.1001-9332.201809.008
ZHANG J X, LI H Y, CAO E J, et al. Assessment of ecological vulnerability in multi-scale and its spatial correlation: A case study of Bailongjiang Watershed in Gansu province, China[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2897-2906. DOI:10.13287/j.1001-9332.201809.008
doi: 10.13287/j.1001-9332.201809.008
16 张学玲, 余文波, 蔡海生, 等. 区域生态环境脆弱性评价方法研究综述[J]. 生态学报, 2018, 38(16): 5970-5981. DOI:10.5846/stxb201708211502
ZHANG X L, YU W B, CAI H S, et al. Review of the evaluation methods of regional eco-environmental vulnerability[J]. Acta Ecologica Sinica, 2018, 38(16): 5970-5981. DOI:10.5846/stxb201708211502
doi: 10.5846/stxb201708211502
17 李连伟, 刘展, 白永良, 等. 基于AHP-CVI技术的黄河三角洲海岸带环境脆弱性评价[J]. 生态环境学报, 2018, 27(2): 297-303. DOI:10.16258/j.cnki.1674-5906.2018.02.014
LI L W, LIU Z, BAI Y L, et al. Environmental vulnerability evaluation of Yellow River Delta coast based on AHP-CVI technology[J]. Ecology and Environmental Sciences, 2018, 27(2): 297-303. DOI: 10.16258/j.cnki.1674-5906.2018.02.014
doi: 10.16258/j.cnki.1674-5906.2018.02.014
18 张宪宇, 郄晗彤, 杨文杰. 基于模糊综合评价法的北京永定河水源地生态脆弱性评价[J]. 环境保护科学, 2021, 47(3): 159-163. DOI:10.16803/j.cnki.issn.1004-6216.2021.03.027
ZHANG X Y, QIE H T, YANG W J. Assessment of ecological vulnerability of water source in Yongding River based on fuzzy comprehensive evaluation method[J]. Environmental Protection Science, 2021, 47(3): 159-163. DOI:10.16803/j.cnki.issn. 1004-6216.2021.03.027
doi: 10.16803/j.cnki.issn. 1004-6216.2021.03.027
19 郭泽呈, 魏伟, 庞素菲, 等. 基于SPCA和遥感指数的干旱内陆河流域生态脆弱性时空演变及动因分析:以石羊河流域为例[J]. 生态学报, 2019, 39(7): 2558-2572. DOI:10.5846/stxb201805211114
GUO Z C, WEI W, PANG S F, et al. Spatio-temporal evolution and motivation analysis of ecological vulnerability in arid inland river basin based on SPCA and remote sensing index: A case study on the Shiyang River Basin[J]. Acta Ecologica Sinica, 2019, 39(7): 2558-2572. DOI:10.5846/stxb201805211114
doi: 10.5846/stxb201805211114
20 黄越, 程静, 王鹏. 中国北方农牧交错区生态脆弱性时空演变格局与驱动因素:以盐池县为例[J]. 干旱区地理, 2021, 44(4): 1175-1185. DOI:10.12118/j.issn.1000-6060.2021.04.29
HUANG Y, CHENG J, WANG P. Spatiotemporal evolution pattern and driving factors of ecological vulnerability in agro-pastoral region in Northern China: A case of Yanchi county in Ningxia[J]. Arid Land Geography, 2021, 44(4): 1175-1185. DOI:10.12118/j.issn.1000-6060.2021.04.29
doi: 10.12118/j.issn.1000-6060.2021.04.29
21 茹少峰, 马茹慧. 黄河流域生态环境脆弱性评价、空间分析及预测[J]. 自然资源学报, 2022, 37(7): 1722-1734. DOI:10.31497/zrzyxb.20220705
RU S F, MA R H. Evaluation, spatial analysis and prediction of ecological environment vulnerability of Yellow River Basin[J]. Journal of Natural Resources, 2022, 37(7): 1722-1734. DOI:10.31497/zrzyxb.20220705
doi: 10.31497/zrzyxb.20220705
22 贾晶晶, 赵军, 王建邦, 等. 基于SRP模型的石羊河流域生态脆弱性评价[J]. 干旱区资源与环境, 2020, 34(1): 34-41. DOI:10.13448/j.cnki.jalre. 2020.005
JIA J J, ZHAO J, WANG J B, et al. Ecological vulnerability assessment of Shiyang River Basin based on SRP model[J]. Journal of Arid Land Resources and Environment, 2020, 34(1): 34-41. DOI:10. 13448/j.cnki.jalre.2020.005
doi: 10. 13448/j.cnki.jalre.2020.005
23 金丽娟, 许泉立. 基于SRP模型的四川省生态脆弱性评价[J]. 生态科学, 2022, 41(2): 156-165. DOI:10.14108/j.cnki.1008-8873.2022.02.019
JIN L J, XU Q L. Ecological vulnerability assessment of Sichuan province based on SRP model[J]. Ecological Science, 2022, 41(2): 156-165. DOI:10. 14108/j.cnki.1008-8873.2022.02.019
doi: 10. 14108/j.cnki.1008-8873.2022.02.019
24 赵越, 罗志军, 李雅婷, 等. 赣江上游流域景观生态风险的时空分异:从生产-生活-生态空间的视角[J]. 生态学报, 2019, 39(13): 4676-4686. DOI:10.5846/stxb201804040766
ZHAO Y, LUO Z J, LI Y T, et al. Study of the spatial-temporal variation of landscape ecological risk in the upper reaches of the Ganjiang River Basin based on the "production-living-ecological space"[J]. Acta Ecologica Sinica, 2019, 39(13): 4676-4686. DOI:10.5846/stxb201804040766
doi: 10.5846/stxb201804040766
25 史利江, 刘敏, 李艳萍, 等. 汾河流域县域经济差异的时空格局演变及驱动因素[J]. 地理研究, 2020, 39(10): 2361-2378. DOI:10.11821/dlyj020190785
SHI L J, LIU M, LI Y P, et al. The spatio-temporal evolution and influencing factors of economic difference at county level in Fenhe River Basin[J]. Geographical Research, 2020, 39(10): 2361-2378. DOI:10.11821/dlyj020190785
doi: 10.11821/dlyj020190785
26 杨景娜. 汾河流域典型黄土区生态脆弱性评价:以临汾市为例[D]. 北京: 北京林业大学, 2020.
YANG J N. Ecological Vulnerability Assessment of Typical Loess Area in Fenhe River Basin: Taking Linfen City as an Example[D]. Beijing: Beijing Forestry University, 2020.
27 徐超璇, 鲁春霞, 黄绍琳. 张家口地区生态脆弱性及其影响因素[J]. 自然资源学报, 2020, 35(6): 1288-1300. DOI:10.31497/zrzyxb.20200603
XU C X, LU C X, HUANG S L. Study on ecological vulnerability and its influencing factors in Zhangjiakou area[J]. Journal of Natural Resources, 2020, 35(6): 1288-1300. DOI:10.31497/zrzyxb. 20200603
doi: 10.31497/zrzyxb. 20200603
28 张慧琳, 吴攀升, 侯艳军. 五台山地区生态脆弱性评价及其时空变化[J]. 生态与农村环境学报, 2020, 36(8): 1026-1035. DOI:10.19741/j.issn.1673-4831. 2019.0931
ZHANG H L, WU P S, HOU Y J. Ecological vulnerability assessment and its temporal and spatial changes in Wutai Mountain area[J]. Journal of Ecology and Rural Environment, 2020, 36(8): 1026-1035. DOI:10.19741/j.issn.1673-4831.2019. 0931
doi: 10.19741/j.issn.1673-4831.2019. 0931
29 孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原多尺度干旱特征及影响因素[J]. 地理研究, 2019, 38(7): 1820-1832. DOI:10.11821/dlyj020190088
SUN Y J, LIU X F, REN Z Y, et al. Spatiotemporal variations of multi-scale drought and its influencing factors across the Loess Plateau from 1960 to 2016[J]. Geographical Research, 2019, 38(7): 1820-1832. DOI:10.11821/dlyj020190088
doi: 10.11821/dlyj020190088
30 章文波, 付金生. 不同类型雨量资料估算降雨侵蚀力[J]. 资源科学, 2003, 25(1): 35-41. DOI:10. 3321/j.issn:1007-7588.2003.01.006
ZHANG W B, FU J S. Rainfall erosivity estimation under different rainfall amount[J]. Resources Science, 2003, 25(1): 35-41. DOI:10.3321/j.issn:1007-7588.2003.01.006
doi: 10.3321/j.issn:1007-7588.2003.01.006
31 张凤荣, 靳东升, 李超, 等. 中国土系志(山西卷)[M]. 北京: 科学出版社, 2017: 69-295.
ZHANG F R, JIN D S, LI C, et al. Soil Series of China (Shanxi Volume)[M]. Beijing: Science Press, 2017: 69-295.
32 陈红, 江旭聪, 任磊, 等. 基于RUSLE模型的淮河流域土壤侵蚀定量评价[J]. 土壤通报, 2021, 52(1): 165-176. DOI:10.19336/j.cnki.trtb.2020022602
CHEN H, JIANG X C, REN L, et al. Quantitative evaluation of soil erosion in the Huaihe River Basin based on RUSLE model[J]. Chinese Journal of Soil Science, 2021, 52(1): 165-176. DOI:10.19336/j.cnki.trtb.2020022602
doi: 10.19336/j.cnki.trtb.2020022602
33 布仁仓, 李秀珍, 胡远满, 等. 尺度分析对景观格局指标的影响[J]. 应用生态学报, 2003, 14(12): 2181-2186. DOI:10.13287/j.1001-9332.2003.0481
BU R C, LI X Z, HU Y M, et al. Scaling effects on landscape pattern indices[J]. Chinese Journal of Applied Ecology, 2003, 14(12): 2181-2186. DOI:10.13287/j.1001-9332.2003.0481
doi: 10.13287/j.1001-9332.2003.0481
34 赵文武, 傅伯杰, 陈利顶. 景观指数的粒度变化效应[J]. 第四纪研究, 2003, 21(3): 326-333. DOI:10.3321/j.issn:1001-7410.2003.03.011
ZHAO W W, FU B J, CHEN L D. The effects of grain change on landscape indices[J]. Quaternary Sciences, 2003, 21(3): 326-333. DOI:10.3321/j.issn:1001-7410.2003.03.011
doi: 10.3321/j.issn:1001-7410.2003.03.011
35 李振亚, 魏伟, 周亮, 等. 中国陆地生态敏感性时空演变特征[J]. 地理学报, 2022, 77(1): 150-163. DOI:10.11821/dlxb202201011
LI Z Y, WEI W, ZHOU L, et al. Spatio-temporal evolution characteristics of terrestrial ecological sensitivity in China[J]. Acta Geographica Sinica, 2022, 77(1): 150-163. DOI:10.11821/dlxb202201011
doi: 10.11821/dlxb202201011
36 刘慧, 师学义. 静乐县生态脆弱性时空演变与分区研究[J]. 生态与农村环境学报, 2020, 36(1): 34-43. DOI:10.19741/j.issn.1673-4831.2019.0469
LIU H, SHI X Y. Spatio-temporal evolution and zoning of ecological vulnerability of Jingle county[J]. Journal of Ecology and Rural Environment, 2020, 36(1): 34-43. DOI:10.19741/j.issn.1673-4831. 2019.0469
doi: 10.19741/j.issn.1673-4831. 2019.0469
37 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134. DOI:10.11821/dlxb201701010
WANG J F, XU C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. DOI:10.11821/dlxb201701010
doi: 10.11821/dlxb201701010
38 陈志明. 论中国地貌图的研制原则、内容与方法:以1∶4 000 000全国地貌图为例[J]. 地理学报, 1993, 48(2): 105-113.
CHEN Z M. On the principle, contents and methods used to compile the Chinese geomorphological maps:Taking the 1∶4 000 000 Chinese geomorphological map as an example[J]. Acta Geographica Sinica, 1993, 48(2): 105-113.
39 张彦军, 郭胜利, 南雅芳, 等. 水土流失治理措施对小流域土壤有机碳和全氮的影响[J]. 生态学报, 2012, 32(18): 5777-5785. DOI:10.5846/stxb201108121182
ZHANG Y J, GUO S L, NAN Y F, et al. Effects of soil erosion control measures on soil organic carban and total nitrogen in a small watershed[J]. Acta Ecologica Sinica, 2012, 32(18): 5777-5785. DOI:10.5846/stxb201108121182
doi: 10.5846/stxb201108121182
40 阳文锐. 北京城市景观格局时空变化及驱动力[J]. 生态学报, 2015, 35(13): 4357-4366. DOI:10.5846/ stxb201409231882
YANG W R. Spatiotemporal change and driving forces of urban landscape pattern in Beijing[J]. Acta Ecologica Sinica, 2015, 35(13): 4357-4366. DOI:10.5846/stxb201409231882
doi: 10.5846/stxb201409231882
41 刘海龙, 王炜桥, 王跃飞, 等. 汾河流域生态敏感性综合评价及时空演变特征[J]. 生态学报, 2021, 41(10): 3952-3964. DOI:10.5846/stxb202101190204
LIU H L, WANG W Q, WANG Y F, et al. Comprehensive evaluation of ecological sensitivity and the characteristics of spatiotemporal variations in Fenhe River Basin[J]. Acta Ecologica Sinica, 2021, 41(10): 3952-3964. DOI:10.5846/stxb202101190204
doi: 10.5846/stxb202101190204
[1] 袁利,孙根年. 出境旅游网络关注度时空演变及影响因素研究[J]. 浙江大学学报(理学版), 2023, 50(1): 1-15.
[2] 朱相君,薛亮. 陕甘宁革命老区生态系统服务价值时空分异及影响因素研究[J]. 浙江大学学报(理学版), 2022, 49(4): 498-507.
[3] 马小雯, 章笑艺, 来丽芳, 张丰, 杜震洪, 刘仁义. 基于地理探测器的浙江省空气质量风险因子分析[J]. 浙江大学学报(理学版), 2018, 45(3): 351-362.