Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (2): 151-158    DOI: 10.3785/j.issn.1008-9497.2022.02.003
数学与计算机科学     
多孔介质中相互作用的Brinkman方程组与Darcy方程组解的收敛性
石金诚1(),肖胜中2()
1.广州华商学院 数据科学学院,广东 广州 511300
2.广东农工商职业技术学院 科研处,广东 广州 510507
Jincheng SHI1(),Shengzhong XIAO2()
1.School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China
2.Scientific Research Department,Guangdong AIB Polytechnic College,Guangzhou 510507,China) Convergence of solutions for Brinkman equations and Darcy equations interacting in porous media
 全文: PDF(531 KB)   HTML( 13 )
摘要:

研究了在R3有界区域内多孔介质中相互作用的Brinkman流体方程组与Darcy流体方程组解的收敛性。假设在Ω1中,流体速度较慢满足Brinkman方程组,而在Ω2中,饱和流体满足Darcy方程组,借助温度T的最大值以及其他界,构造了能量表达式,得到了满足该能量表达式的微分不等式和Brinkman-Darcy流体方程组的解对边界系数的收敛性结果。

关键词: 收敛性Brinkman方程组Darcy方程组边界系数    
Abstract:

The convergence of solutions for the Brinkman fluid interfacing with a Darcy fluid in a bounded region in?R3 is studied. We assume that the velocity of fluid is slow and it is governed by the Brinkman equations in Ω1, while in Ω2,the saturated flow satisfies the Darcy equations. With the aid of the maximum of the temperature T and some other a priori bounds, we formulate an energy expression, and the expression satisfies a differential inequality. By integrating, we are able to demonstrate the convergence result for the boundary coefficient.

Key words: convergence    Brinkman equations    Darcy equations    boundary coefficient
收稿日期: 2021-01-06 出版日期: 2022-03-22
CLC:  O 175.29  
基金资助: 广东省普通高校自然科学重点科研项目(2019KZDXM042);国家自然科学基金资助项目(11371175);广州华商学院校内导师制项目(2020HSDS16)
通讯作者: 肖胜中     E-mail: 0818@163.com;172013444@qq.com
作者简介: 石金诚(1983—),ORCID:https://orcid.org/0000-0002-4016-1197,男,硕士,讲师,主要从事偏微分方程研究,E-mail:hning 0818@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石金诚
肖胜中

引用本文:

石金诚,肖胜中. 多孔介质中相互作用的Brinkman方程组与Darcy方程组解的收敛性[J]. 浙江大学学报(理学版), 2022, 49(2): 151-158.

Jincheng SHI,Shengzhong XIAO. . Journal of Zhejiang University (Science Edition), 2022, 49(2): 151-158.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.02.003        https://www.zjujournals.com/sci/CN/Y2022/V49/I2/151

1 AMES K A, STRAUGHAN B. Non-Standard and Improperly Posed Problems[M]. San Diego: Academic Press, 1997. doi:10.1016/s0076-5392(97)80007-0
doi: 10.1016/s0076-5392(97)80007-0
2 STRAUGHAN B. Continuous dependence on the heat source in resonant porous penetrative convection[J]. Studies in Applied Mathematics, 2011, 127(3): 302-314. DOI:10.1111/j.1467-9590.2011.00521.x
doi: 10.1111/j.1467-9590.2011.00521.x
3 SCOTT N L. Continuous dependence on boundary reaction terms in a porous medium of Darcy type[J]. Journal of Mathematical Analysis and Applications, 2013, 399(2): 667-675. DOI:10.1016/j. jmaa. 2012.10.054
doi: 10.1016/j. jmaa. 2012.10.054
4 SCOTT N L, STRAUGHAN B. Continuous dependence on the reaction terms in porous convection with surface reactions[J]. Quarterly of Applied Mathematics, 2013, 71(3): 501-508. DOI:10.1090/S0033-569X-2013-01289-X
doi: 10.1090/S0033-569X-2013-01289-X
5 HARFASH J A. Structural stability for two convection models in a reacting fluid with magnetic field effect[J]. Annales Henri Poincaré, 2014, 15(12): 2441-2465. DOI:10.1007/s00023-013-0307-z
doi: 10.1007/s00023-013-0307-z
6 LI Y F, LIN C H. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe[J]. Applied Mathematics and Computation, 2014, 244(1): 201-208. doi:10.1016/j.amc.2014.06.082
doi: 10.1016/j.amc.2014.06.082
7 CIARLETTA M, STRAUGHAN B, TIBULLO V. Structural stability for a thermal convection model with temperature-dependent solubility[J]. Nonlinear Analysis: Real World Applications, 2015, 22: 34-43. DOI:10.1016/j.nonrwa.2014.07.012
doi: 10.1016/j.nonrwa.2014.07.012
8 CHEN W H, LIU Y. Structural stability for a Brinkman-Forchheimer type model with temperature-dependent solubility[J]. Boundary Value Problems, 2016, 2016(55): 1-14. DOI:10.1186/S13661-016-0558-Y
doi: 10.1186/S13661-016-0558-Y
9 LIU Y. Continuous dependence for a thermal convection model with temperature-dependent solubility[J]. Applied Mathematics and Computation, 2017, 308: 18-30. DOI:10.1016/j.amc.2017.03.004
doi: 10.1016/j.amc.2017.03.004
10 李远飞. 大尺度海洋大气动力学三维黏性原始方程对边界参数的连续依赖性[J]. 吉林大学学报(理学版), 2019, 57(5): 1053-1059. DOI:10.13413/j.cnki.jdxblxb.2019038
LI Y F. Continuous dependence on boundary parameters for three-dimensional viscous primitive equation of large-scale ocean atmospheric dynamics[J]. Journal of Jilin University(Science Edition), 2019, 57(5): 1053-1059. DOI:10.13413/j.cnki.jdxblxb.2019038
doi: 10.13413/j.cnki.jdxblxb.2019038
11 李远飞.原始方程组对黏性系数的连续依赖性[J]. 山东大学学报(理学版), 2019, 54(12): 12-23. DOI:10.6040/j.issn.1671-9352.0.2019.539
LI Y F. Continuous dependence on the viscosity coefficient for the primitive equations[J]. Journal of Shandong University(Science Edition), 2019, 54(12): 12-23. DOI:10.6040/j.issn.1671-9352.0.2019.539
doi: 10.6040/j.issn.1671-9352.0.2019.539
12 李远飞,郭连红.具有边界反应Brinkman-Forchheimer型多孔介质的结构稳定性[J]. 高校应用数学学报,2019, 34(3): 315-324. DOI:10.13299/j.cnki.amjcu.002084
LI Y F, GUO L H. Structural stability on boundary reaction terms in a porous medium of Brinkman-Forchheimer type[J]. Applied Mathematics-A Journal of Chinese Universities, 2019, 34(3): 315-324. DOI:10.13299/j.cnki.amjcu.002084
doi: 10.13299/j.cnki.amjcu.002084
13 CICHO? M, STRAUGHAN B, YANTIR A. On continuous dependence of solutions of dynamic equations[J]. Applied Mathematics and Computation, 2015, 252: 473-483. DOI:10.1016/j.amc.2014.12.047
doi: 10.1016/j.amc.2014.12.047
14 MA H, LIU B. Exact controllability and continuous dependence of fractional neutral integro-differential equations with state dependent delay[J]. Acta Mathematica Scientia, 2017, 37(1): 235-258. DOI:10.1016/S0252-9602(16)30128-X
doi: 10.1016/S0252-9602(16)30128-X
15 WU H L, REN Y, HU F. Continuous dependence property of BSDE with constraints[J]. Applied Mathematics Letters, 2015, 45: 41-46. DOI:10.1016/j.aml.2015.01.002
doi: 10.1016/j.aml.2015.01.002
16 PAYNE L E, STRAUGHAN B. Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions[J]. Journal de Mathématiques Pures et Appliqués, 1998, 77(4): 317-354. DOI:10.1016/S0021-7824(98)80102-5
doi: 10.1016/S0021-7824(98)80102-5
17 LIU Y, XIAO S Z. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain[J]. Nonlinear Analysis: Real World Applications, 2018,42: 308-333. DOI:10.1016/j.nonrwa.2018.01.007
doi: 10.1016/j.nonrwa.2018.01.007
18 LIU Y, XIAO S Z, LIN Y W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain[J]. Mathematics and Computers in Simulation, 2018, 150: 66-82. DOI:10.1016/j.matcom.2018.02.009
doi: 10.1016/j.matcom.2018.02.009
19 STRAUGHAN B. Stability and Wave Motion in Porous Media[M]. New York: Springer-Verlag,2008. doi:10.1007/978-0-387-76543-3_4
doi: 10.1007/978-0-387-76543-3_4
[1] 金红燕,孙根年,张兴泰. 中国旅游业高质量发展水平的区域差异及收敛性[J]. 浙江大学学报(理学版), 2023, 50(4): 495-507.
[2] 李娟. 高阶对流Cahn-Hilliard型方程的二阶线性化差分方法[J]. 浙江大学学报(理学版), 2022, 49(1): 60-65.
[3] 章茜, 蔡光辉. WOD随机变量序列加权和的完全收敛性[J]. 浙江大学学报(理学版), 2021, 48(4): 435-439.
[4] 石金诚, 李远飞. 多孔介质中的Darcy方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(3): 298-303.
[5] 石金诚, 李远飞. 有界区域内相互作用的Forchheimer-Darcy流体方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(1): 57-63.
[6] 宋明珠, 邵静, 刘彩云. END随机变量序列移动平均过程的极限性质[J]. 浙江大学学报(理学版), 2020, 47(5): 559-563.
[7] 高云峰, 邹广玉. NSD序列生成的移动平均过程的矩完全收敛性[J]. 浙江大学学报(理学版), 2020, 47(2): 172-177.
[8] 赵喆, 张天野, 黄彦浩, 郑文庭, 陈为. 面向仿真数据的电网运行方式可视分析[J]. 浙江大学学报(理学版), 2020, 47(1): 36-44.
[9] 章茜, 蔡光辉, 郑钰滟. WOD随机变量序列的完全收敛性[J]. 浙江大学学报(理学版), 2019, 46(4): 412-415.
[10] 章茜. 行为两两NQD随机变量阵列加权和的完全收敛性[J]. 浙江大学学报(理学版), 2017, 44(5): 538-541.
[11] 张理涛, 谷同祥, 孟慧丽. 解非对称鞍点问题的广义交替分裂预处理子的一个注记[J]. 浙江大学学报(理学版), 2017, 44(2): 168-173.
[12] 张理涛. 解鞍点问题的新SOR类迭代法的一个注记[J]. 浙江大学学报(理学版), 2016, 43(3): 292-295.
[13] 宋明珠, 吴永锋, 向亚云. 两两NQD阵列加权和的LP收敛性[J]. 浙江大学学报(理学版), 2016, 43(2): 164-167.
[14] 郭学萍. Banach空间中Newton法的收敛性[J]. 浙江大学学报(理学版), 2000, 27(5): 484-492.
[15] 吴 彪 . 冷却模型中固化层的数值计算 [J]. 浙江大学学报(理学版), 2000, 27(1): 42-46.