Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (3): 316-325    DOI: 10.3785/j.issn.1006-754X.2025.05.127
Robotic and Mechanism Design     
Research on crawling-jumping robot driven by dielectric elastomers
Feng PAN1(),Jiaping RUAN2,Wei TANG2(),Jun ZOU2
1.Zhejiang Sunny Optical Intelligence Technology Co. , Ltd. , Hangzhou 310051, China
2.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(4025KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Robots capable of both crawling and jumping demonstrate superior adaptability to complex environments compared to those with a single movement mode. Additionally, their soft actuators offer significant advantages such as large deformation and simple structure. Based on the soft actuation method of dielectric elastomer, a crawling-jumping soft robot was designed. Firstly, a bi-stable dielectric elastomer actuator was designed, consisting of a dielectric elastomer membrane, soft electrodes, reinforcing ribs, and a flexible frame. The actuator exhibited bi-stable states in both transverse and longitudinal directions. Through analysis and experiments, the size parameters of the actuator were determined. Secondly, a bi-stable dielectric elastic actuator was fabricated using VHB4910 dielectric elastic membrane. The influence law of pre-stretching rate of membrane on the dynamic response of actuator was studied, and its output torque was tested. The results confirmed that the actuator could enable the robot to jump. Then, based on the dielectric elastomer actuator, a crawling-jumping robot was designed, comprising a crawling module and a jumping module. The robot was capable of moving straight, turning and jumping. Finally, a prototype of crawling-jumping robot was fabricated and tested. The test results showed that the robot achieved a maximum movement speed of 10 cm/s (equivalent to traveling 1.25 body lengths per second), a maximum turning speed of 12(°)/s, a jumping height of approximately 5 mm, and a jumping distance of approximately 3 cm. These findings provide a novel scheme for structural design and actuation of crawling-jumping soft robots.



Key wordssoft actuation      dielectric elastomer      bi-stable state      soft actuator      soft robot     
Received: 02 April 2025      Published: 02 July 2025
CLC:  TH 122  
Corresponding Authors: Wei TANG     E-mail: fpan@sunnyoptical.com;weitang@zju.edu.cn
Cite this article:

Feng PAN,Jiaping RUAN,Wei TANG,Jun ZOU. Research on crawling-jumping robot driven by dielectric elastomers. Chinese Journal of Engineering Design, 2025, 32(3): 316-325.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.127     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I3/316


介电弹性体驱动的爬行-跳跃机器人研究

具备爬行与跳跃功能的机器人比只能单一运动的机器人更能适应复杂环境,同时其柔性驱动器具有驱动变形大、结构简单等优势。基于介电弹性体的柔性驱动方式,设计了一种爬行-跳跃软体机器人。首先,设计了一种双稳态介电弹性体执行器,其由介电弹性体膜、柔性电极、加强筋和柔性框架构成,具有横向和纵向两个双稳态,并通过分析和试验确定了其尺寸参数;其次,采用VHB4910介电弹性体膜制作了双稳态介电弹性体执行器,研究了薄膜预拉伸率对执行器动态响应的影响规律,并测试了其输出力矩,验证了采用该执行器可实现机器人跳跃;接着,基于介电弹性体执行器,设计了爬行-跳跃机器人,其由爬行模块和跳跃模块组成,可实现直行、转弯和跳跃等动作;最后,制作了爬行-跳跃机器人实物并进行了测试。测试结果表明:机器人最大运动速度为10 cm/s,相当于每秒行进1.25个身长;最大转弯速度为12(°)/s;跳跃高度约为5 mm,跳跃距离约为3 cm。研究结果为爬行-跳跃软体机器的结构设计和驱动提供了新方案。


关键词: 柔性驱动,  介电弹性体,  双稳态,  柔性执行器,  软体机器人 
Fig.1 Structure of bi-stable state dielectric elastomer actuator
Fig.2 Two stable deformations of actuator
Fig.3 Actuation principle of dielectric elastomer
Fig.4 Switching process of stable states of actuator
Fig.5 Energy change process of actuator
Fig.6 Schematic of size parameters of actuator
参数数值
d0.188
w5
l10
r15
q8
L88
W48
s15
s25
u18
p1
Table 1 Size parameter values of actuator
Fig.7 Fabrication process of actuator
Fig.8 Influence of pre-stretching rate of dielectric elastomer membrane on bending angle under steady state 2 of actuator
Fig.9 Influence of pre-stretching rate of dielectric elastomer membrane on bending angle under steady state 1 of actuator
执行器εxεy
执行器1400500
执行器2500400
执行器3400400
执行器4500500
Table 2 Pre-stretching rate of 4 dielectric elastomer membranes of actuator
Fig.10 Dynamic response curves under steady state 1 of actuators
Fig.11 Dynamic response curves under steady state 2 of actuators
Fig.12 Testing device of output torque of actuator
Fig.13 Mechanical analysis of actuator during testing process
Fig.14 Variation curves of applied force
Fig.15 Variation curves of angle between actuator end and ground
Fig.16 Output torque of actuators
Fig.17 Crawling module
Fig.18 Schematic of motion process of crawling module
Fig.19 Jumping module
Fig.20 Schematic of motion process of jumping module
Fig.21 Overall structure of crawling-jumping robot
Fig.22 Prototype of crawling-jumping robot
Fig.23 Crawling time sequence images of robot
Fig.24 Test results of robot's crawling speed
Fig.25 Turning time sequence images of robot
Fig.26 Test results of robot's turning speed
Fig.27 Jumping time sequence images of robot
[[11]]   刘磊, 温涛, 韩伟涛, 等. 管道内软体爬行机器人的设计与性能分析[J/OL]. 工程设计学报, 2024, 31(5): 614-622.
LIU L, WEN T, HAN W T, et al. Design and performance analysis of fast crawling soft pipeline robot[J]. Chinese Journal of Engineering Design, 2024, 31(5): 614-622.
[[2]]   吴业辉, 刘梦凡, 白瑞玉, 等. 微小型跳跃机器人: 仿生原理,设计方法与驱动技术[J]. 动力学与控制学报, 2023, 21(12): 37-52.
WU Y H, LIU M F, BAI R Y, et al. A review of small-scale jumping robots: bio-mimetic mechanism, mechanical design and actuation[J]. Journal of Dynamics and Control, 2023, 21(12): 37-52.
[[3]]   KIM Y, VAN DEN BERG J, CROSBY A J. Autonomous snapping and jumping polymer gels[J]. Nature Materials, 2021, 20(12): 1695-1701.
[[4]]   莫小娟, 葛文杰, 赵东来, 等. 微小型跳跃机器人研究现状综述[J]. 机械工程学报, 2019, 55(15): 109-123. doi:10.3901/jme.2019.15.109
MO X J, GE W J, ZHAO D L, et al. Review: research status of miniature jumping robot[J]. Journal of Mechanical Engineering, 2019, 55(15): 109-123.
doi: 10.3901/jme.2019.15.109
[[5]]   李贺, 王禹, 杜小振, 等. 一种可跳跃的月面移动机器人系统设计[J]. 深空探测学报(中英文), 2020, 7(3): 304-310.
LI H, WANG Y, DU X Z, et al. Design of a lunar mobile robot with jumping ability[J]. Journal of Deep Space Exploration, 2020, 7(3): 304-310.
[[6]]   熊勇刚, 王延炜, 陈鹏涛, 等. 新型轮足跳跃机器人的结构设计及实现[J]. 机械工程与自动化, 2023(1): 121-123.
XIONG Y G, WANG Y W, CHEN P T, et al. Structural design and realization of new wheel-footed jumping robot[J]. Mechanical Engineering & Automation, 2023(1): 121-123.
[[7]]   张涛, 王开松, 唐威, 等. 电流体泵驱动的柔性弯曲执行器的设计及分析[J]. 工程设计学报, 2023, 30(4): 467-475.
ZHANG T, WANG K S, TANG W, et al. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chinese Journal of Engineering Design, 2023, 30(4): 467-475.
[[8]]   TANG W, ZHONG Y D, XU H X, et al. Self-protection soft fluidic robots with rapid large-area self-healing capabilities[J]. Nature Communications, 2023, 14(1): 6430.
[[9]]   GUO X Y, TANG W, QIN K C, et al. Powerful UAV manipulation via bioinspired self-adaptive soft self-contained gripper[J]. Science Advances, 2024, 10(19): eadn6642.
[[10]]   LI J J, YU K Q, WANG G, et al. Recent development of jumping motions based on soft actuators[J]. Advanced Functional Materials, 2023, 33(35): 2300156.
[[11]]   JEON J, CHOI J C, LEE H, et al. Continuous and programmable photomechanical jumping of polymer monoliths[J]. Materials Today, 2021, 49: 97-106.
[[12]]   LI M T, WANG X, DONG B, et al. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator[J]. Nature Communications, 2020, 11(1): 3988.
[[13]]   XU C Y, YANG Z L, TAN S W K, et al. Magnetic miniature actuators with six-degrees-of-freedom multimodal soft-bodied locomotion[J]. AdvancedIntelligent Systems, 2022, 4(4): 2100259.
[[14]]   HU W Q, LUM G Z, MASTRANGELI M, et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature, 2018, 554: 81-85.
[[15]]   KELLARIS N, ROTHEMUND P, ZENG Y, et al. Spider-inspired electrohydraulic actuators for fast, soft-actuated joints[J]. Advanced Science, 2021, 8(14): 2100916.
[[16]]   HUANG X N, KUMAR K, JAWED M K, et al. Highly dynamic shape memory alloy actuator for fast moving soft robots[J]. Advanced Materials Technologies, 2019, 4(4): 1800540.
[[17]]   AHN C, LIANG X D, CAI S Q. Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot[J]. Advanced Materials Technologies, 2019, 4(7): 1900185.
[[18]]   陈哲琪, 罗英武. 介电弹性体驱动器: 从分子、材料到器件[J]. 中国科学: 化学, 2024, 54(11): 2183-2198. doi:10.1360/ssc-2024-0148
CHEN Z Q, LUO Y W. Dielectric elastomer actuators: molecules, materials, and devices[J]. Scientia Sinica Chimica), 2024, 54(11): 2183-2198.
doi: 10.1360/ssc-2024-0148
[[19]]   赵福腾, 胡华, 赵维玮. 基于液态金属电极卷制态介电弹性体驱动器[J]. 现代制造工程, 2025(3): 84-89, 98.
ZHAO F T, HU H, ZHAO W W. Rolling dielectric elastomer actuator based on liquid metal electrode[J]. Modern Manufacturing Engineering, 2025(3): 84-89, 98.
[[20]]   ZHU Y B, LIU N, CHEN Z Q, et al. 3D-printed high-frequency dielectric elastomer actuator toward insect-scale ultrafast soft robot[J]. ACS Materials Letters, 2023, 5(3): 704-714.
[[21]]   WANG L T, ZHUO J S, PENG J B, et al. A stretchable soft pump driven by a heterogeneous dielectric elastomer actuator[J]. Advanced Functional Materials, 2024, 34(52): 2411160.
[[22]]   LI T F, LI G R, LIANG Y M, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4): e1602045.
[[23]]   PENG J B, ZHUO J S, DONG H F, et al. Dielectric elastomer actuators with low driving voltages and high mechanical outputs enabled by a scalable ultra-thin film multilayering process[J]. Advanced Functional Materials, 2024, 34(48): 2411801.
[[24]]   TANG C, DU B Y, JIANG S W, et al. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale[J]. Science Robotics, 2022, 7: eabm8597.
[[25]]   JI X B, LIU X C, CACUCCIOLO V, et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators[J]. Science Robotics, 2019, 4(37): eaaz6451.
[[26]]   GODABA H, LI J S, WANG Y Z, et al. A soft jellyfish robot driven by a dielectric elastomer actuator[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 624-631.
[[27]]   GU G Y, ZOU J, ZHAO R K, et al. Soft wall-climbing robots[J]. Science Robotics, 2018, 3(25): eaat2874.
[[28]]   SHI Y, ASKOUNIS E, PLAMTHOTTAM R, et al. A processable, high-performance dielectric elastomer and multilayering process[J]. Science, 2022, 377: 228-232.
[[29]]   ZHAO J W, WANG S, MCCOUL D, et al. Bistable dielectric elastomer minimum energy structures[J]. Smart Material Structures, 2016, 25(7): 075016.
[[30]]   LIU Y, GAO M, MEI S F, et al. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators[J]. Applied Physics Letters, 2013, 103(6): 064101.
[1] Qiliang WANG,Yongqi LI,Tong LIU,Yongfeng HONG,Meijuan XU. Design and analysis of pneumatic sector chamber soft bending driver[J]. Chinese Journal of Engineering Design, 2024, 31(2): 221-229.
[2] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chinese Journal of Engineering Design, 2021, 28(2): 227-234.
[3] SUI Li-ming, XI Zuo-yan, LIU Ting-yu. Design and fabrication of multi-chamber biomimetic pneumatic soft actuators[J]. Chinese Journal of Engineering Design, 2017, 24(5): 511-517.