Please wait a minute...
Chinese Journal of Engineering Design  2017, Vol. 24 Issue (5): 511-517    DOI: 10.3785/j.issn.1006-754X.2017.05.004
    
Design and fabrication of multi-chamber biomimetic pneumatic soft actuators
SUI Li-ming, XI Zuo-yan, LIU Ting-yu
College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
Download: HTML     PDF(4443KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Soft actuators are made of soft materials, and can realize movement through bending, contraction and extension of the soft elastomer material. Soft actuators are the key parts to realize the movement of biomimetic soft robots. Development of proper soft actuator is the prerequisite of biomimetic soft robot study. In order to develop biomimetic soft actuators which can be applied to soft robot, the structure of multi-chamber biomimetic pneumatic soft actuator is designed based on the common soft actuators structures. The main structure of the soft actuator was made of silicon rubber, and the actuator was fabricated by way of 3D printed mold. The main structure of soft actuators were affixed a base or combined to get extending actuators, unidirectional bending actuators and bidirectional bending actuators, which could deform like soft bodied animals do. The characteristics of the three soft actuators were tested. Results showed that the extending actuator has 40% extension under pressure of 15 kPa, and the bending actuator has large deformation under the same pressure. Practice proves that the principles of the multi-chamber biomimetic pneumatic soft actuators are feasible and the fabrication of the actuators is easy. The soft actuators can be applied widely in soft robots and other related areas.



Key wordspneumatic soft actuator      soft robot      biomimetic     
Received: 15 May 2017      Published: 28 October 2017
CLC:  TH138  
Cite this article:

SUI Li-ming, XI Zuo-yan, LIU Ting-yu. Design and fabrication of multi-chamber biomimetic pneumatic soft actuators. Chinese Journal of Engineering Design, 2017, 24(5): 511-517.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2017.05.004     OR     https://www.zjujournals.com/gcsjxb/Y2017/V24/I5/511


多腔体式仿生气动软体驱动器的设计与制作

软体驱动器是一种由柔软材料组成,并主要通过弹性材料的弯曲、收缩或伸长等来实现运动的执行器。软体驱动器是实现仿生软体机器人运动和动作的关键部分,开发适用的软体驱动器是进行仿生软体机器人研究的前提。为研究能够驱动软体机器人的仿生软体驱动器,基于目前常见的软体驱动器形式,提出并设计了一种多腔体式仿生气动软体驱动器。该气动软体驱动器主体结构采用硅胶材料制作,能够利用3D打印的模具进行成型。该驱动器主体结构加上底面或经组合后,可以分别得到伸长驱动器、单向弯曲驱动器及双向弯曲驱动器,能够实现类似身体柔软类动物的仿生变形运动。分别对上述3种软体驱动器的静态特性进行了测试,结果表明,在15 kPa压力下伸长驱动器的伸长率能够达到40%以上,弯曲驱动器在同样压力下也具有较大的弯曲变形。经实践证明,所设计的多腔体式仿生气动软体驱动器原理可行、制作工艺简单,能够在软体机器人及相关领域中得到广泛应用。


关键词: 气动软体驱动器,  软体机器人,  仿生 
[[1]]   ⅡDA F, LASCHI C. Soft robotics:challenges and perspectives[J]. Procedia Computer Science, 2011, 7:99-102.
[[2]]   KIM S, LASCHI C, TRIMMER B. Soft robotics:a bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31(5):287-294.
[[3]]   MAJIDI C. Soft robotics:a perspective-current trends and prospects for the future[J]. Soft Robotics, 2014, 1(1):5-11.
[[4]]   曹玉君,尚建忠,梁科山,等.软体机器人研究现状综述[J].机械工程学报,2012,48(3):25-33. CAO Yu-jun, SHANG Jian-zhong, LIANG Ke-shan, et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering, 2012, 48(3):25-33.
[[5]]   RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553):467-475.
[[6]]   UMEDACHI T, VIKAS V,TRIMMER B A. Softworms:the design and control of non-pneumatic, 3D-printed, deformable robots[J]. Bioinspiration & Biomimetics, 2016,11(2):025001.
[[7]]   SEOK S, ONAL C D, CHO K, et al. Meshworm:a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5):1485-1497.
[[8]]   CALISTI M, GIORELLI M, LEVY G, et al. An octopus-bioinspired solution to movement and manipulation for soft robots[J]. Bioinspiration & Biomimetics, 2011, 6(3):1-10.
[[9]]   MAZZOLAI B, MARGHERI L, CIANCHETTI M. Soft-robotic arm inspired by the octopus:Ⅱ. from artificial requirements to innovative technological solutions[J]. Bioinspiration & Biomimetics, 2012, 7(2):025005.
[[10]]   BOGUE R. Artificial muscles and soft gripping:a review of technologies and applications[J]. Industrial Robot:An International Journal, 2012, 39(6):535-540.
[[11]]   HINES L, PETERSEN K, LUM G Z, et al. Soft actuators for small-scale robotics[J]. Advanced Materials, 2016, 29(13):1603483.
[[12]]   ONAL C D, RUS D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot[J]. Bioinspiration & Biomimetics, 2013, 8(2):026003.
[[13]]   SUZUMORI K, ENDO S, KANDA T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot[C]//IEEE International Conference on Robotics and Automation. Roma, Apr.10-14, 2007.
[[14]]   CHOU C P, HANNAFORD B. Measurement and modeling of McKibben pneumatic artificial muscles[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1):90-102.
[[15]]   MOSADEGH B, POLYGERINOS P, KEPLINGER C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Material, 2014, 24(15):2163-2170.
[[16]]   CONNOLLY F, POLYGERINOS P, WALS C J, et al. Mechanical programming of soft actuators by varying fiber angle[J]. Soft Robotics, 2015, 2(1):26-32.
[[17]]   KIER W M. The diversity of hydrostatic skeletons[J]. Journal of Experimental Biology, 2012, 215(Pt8):1247-1257.
[[18]]   SHEPHERD R F, ILIEVSKIA F, CHOI W, et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences of the USA, 2011,108(51):20400-20403.
[[19]]   PEELE B N, WALLIN T J, ZHAO H, et al. 3D printing antagonistic systems of artificial muscle using projection stereolithography[J]. Bioinspiration & Biomimetics, 2015, 10(5):055003.
[1] Jindong WANG,Yuhong XIE,Yi CHEN,Zhanyang WU. Biomimetic design of hammer pieces for hammer mill based on beaver incisors[J]. Chinese Journal of Engineering Design, 2023, 30(4): 476-484.
[2] Yang DING,Minglu ZHANG,Xin JIAO,Manhong LI. Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors[J]. Chinese Journal of Engineering Design, 2023, 30(2): 154-163.
[3] HE Jian-Hui, ZHANG Yong-Hua. Mechanism design and analysis of a bionic crucian caudal fin driven by shape memory alloy actuator[J]. Chinese Journal of Engineering Design, 2012, 19(1): 9-15.
[4] ZHANG Yong-Hua, HE Jian-Hui, YAN Qin. Design and kinematics parametric investigation of biomimetic robotic crucian[J]. Chinese Journal of Engineering Design, 2011, 18(3): 167-173.