Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (2): 221-229    DOI: 10.3785/j.issn.1006-754X.2024.03.179
Robotic and Mechanism Design     
Design and analysis of pneumatic sector chamber soft bending driver
Qiliang WANG(),Yongqi LI(),Tong LIU,Yongfeng HONG,Meijuan XU
School of Mechanical & Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Download: HTML     PDF(3732KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to design a large angle bending actuator with a simple structure, convenient production and easy modeling, a soft multi chamber bending actuator with a fan-shaped chamber structure was proposed. The actuator was made of super-elastic material. The functional relationship between input air pressure and bending angle was established based on the Yeoh model. The simulation of the bending actuator under different air pressures was carried out using Abaqus. The effects of structural parameters such as chamber end radius, chamber wall thickness, the angle between chamber ends, groove depth, and bottom thickness on the bending angle were analyzed. The soft actuator was manufactured and an experimental platform was built. The bending performance of the actuator was tested. The input air pressure was 0-65 kPa, and the bending angle was 0-218°. The simulation results were basically consistent with the experimental results. A flexible gripper with adjustable claw length was designed based on a bending driver, and its clamping effect on objects of different sizes, shapes, and masses was tested. The experimental results verified the practicality of the designed driver and gripper, and the driver had good bending performance. The research results can provide reference for further research on software drivers.



Key wordssoft robot      multi-chamber      bending actuator      sector-shaped chamber     
Received: 15 June 2023      Published: 26 April 2024
CLC:  TH 138  
Corresponding Authors: Qiliang WANG     E-mail: wangqiliang@jxust.edu.cn;1696748823@qq.com
Cite this article:

Qiliang WANG,Yongqi LI,Tong LIU,Yongfeng HONG,Meijuan XU. Design and analysis of pneumatic sector chamber soft bending driver. Chinese Journal of Engineering Design, 2024, 31(2): 221-229.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.179     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I2/221


气动扇形腔室软体弯曲驱动器的设计及分析

为了设计结构简单、制作方便、易于建模的大角度弯曲驱动器,提出了一种扇形腔室结构的软体多腔室弯曲驱动器。该驱动器由超弹性材料制作而成,并在Yeoh本构模型的基础上,建立了输入空气压力与弯曲角的函数关系。利用Abaqus有限元分析软件对驱动器在不同驱动气压下的弯曲变形进行了仿真,分析了腔室端面半径、腔室壁厚、腔室端面夹角、凹槽深度、底层厚度等结构参数对驱动器弯曲角度的影响。制作了软体驱动器,搭建了气动控制实验平台,测试了驱动器的弯曲性能,输入气压为0~65 kPa,弯曲角度为0~218°,仿真结果与实验结果基本吻合。基于弯曲驱动器设计了一种夹爪长度可调的软体夹持器,测试了其对不同尺寸、形状、质量的物体的夹持效果,实验结果验证了所设计驱动器和夹持器的实用性,表明驱动器具有良好的弯曲性能。研究结果可以为软体驱动器的进一步研究提供参考。


关键词: 软体机器人,  多腔室,  弯曲驱动器,  扇形腔室 
Fig.1 Structure of pneumatic soft bending actuator
Fig.2 Driver model of before and after deformation
Fig.3 Simulation and theoretical values of bending angle of driver
Fig.4 Comparison of bending performance of actuators with different chamber structures
Fig.5 Bending angle of actuator under different cavity end face radii
Fig.6 Bending angle of actuator under different chamber wall thicknesses
Fig.7 Bending angle of actuator under different cavity end face radii
Fig.8 Bending angle of driver at different groove depths
Fig.9 Bending angle of driver under different substrate thicknesses
参数数值
腔室端面半径/mm9
腔室壁厚/mm1
腔室端面夹角/(°)30
凹槽深度/mm1
底层厚度/mm3
Table 1 Size parameters of bending actuators
Fig.10 Production process diagram of driver
Fig.11 Experimental platform for pneumatic control of drivers
Fig.12 Experimental results on bending performance of driver
Fig.13 Comparison of theoretical, simulation, and experimental values of driver bending angle
Fig.14 Experimental results of clamping objects with grippers
[1]   曹玉君,尚建忠,梁科山,等.软体机器人研究现状综述[J].机械工程学报,2012,48(3): 25-33. doi:10.3901/jme.2012.03.025
CAO Y J, SHANG J Z, LIANG K S, et al .Review of soft-bodied robots [J]. Journal of Mechanical Engineering, 2012, 48(3): 25-33.
doi: 10.3901/jme.2012.03.025
[2]   REN L, LI B, WEI G, et al. Biology and bioinspiration of soft robotics: actuation, sensing, and system integration [J]. Science, 2021, 24(9): 103075.
[3]   DE FALCO I, CIANCHETTI M, MENCIASSI A. A soft multi-module manipulator with variable stiffness for minimally invasive surgery [J]. Bioinspiration & Biomimetics, 2017, 12(5): 056008.
[4]   SHANG J, NOONAN D P, PAYNE C, et al. An articulated universal joint based flexible access robot for minimally invasive surgery [C]// 2011 IEEE International Conference on Robotics and Automation. Shanghai, May 9-13, 2011.
[5]   VERMA M S, AINLA A, YANG D, et al. A soft tube-climbing robot [J]. Soft Robotics, 2018, 5(2): 133-137.
[6]   ROZENLEVY S, MESSNER W, TRIMMER B A. The design and development of branch bot: a branch-crawling, caterpillar-inspired, soft robot [J]. The International Journal of Robotics Research, 2021, 40(1): 24-36.
[7]   WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots [J]. Nature, 2016, 536(7617): 451-455.
[8]   POLYGERINOS P, WANG Z, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation [J]. Robotics and Autonomous Systems, 2015, 73: 135-143.
[9]   CONNELLY L, STOYKOV M E, JIA Y, et al. Use of a pneumatic glove for hand rehabilitation following stroke [C]// 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, Sept. 2-6, 2009.
[10]   FOLLADOR M, CONN A T, ROSSITER J. Bistable minimum energy structures (BiMES) for binary robotics [J]. Smart Materials and Structures, 2015, 24(6): 065037.
[11]   HAO Y, WANG T, XIE Z, et al. A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties [J]. Journal of Micromechanics and Micro Engineering, 2018, 28(2): 024004.
[12]   XIAO W, DU X, CHEN W, et al. Cooperative collapse of helical structure enables the actuation of twisting pneumatic artificial muscle [J]. International Journal of Mechanical Sciences, 2021, 201: 106483.
[13]   GUO L, LI K, CHENG G, et al. Design and experiments of pneumatic soft actuators[J]. Robotica, 2021, 39(10): 1806-1815.
[14]   CONNOLLY F, POLYGERINOS P, WALSH C J, et al. Mechanical programming of soft actuators by varying fiber angle [J]. Soft Robotics, 2015, 2(1): 26-32.
[15]   刘亭羽.仿生气动软体蠕动机器人的研究[D].哈尔滨:哈尔滨工程大学,2018.
LIU T Y. Research on bionic pneumatic peristaltic soft robot[D]. Harbin: Harbin Engineering University, 2018.
[16]   XIE Z, DOMEI A G, AN N, et al. Octopus arm-inspired tapered soft actuators with suckers for improved grasping[J]. Soft Robotics, 2020, 7(5): 639-648.
[17]   LIU M, HAO L, ZHANG W, ZHAO Z. A novel design of shape-memory alloy-based soft robotic gripper with variable stiffness [J]. International Journal of Advanced Robotic Systems. 2020, 17(1): 1-12.
[18]   YIN J, HELLEBREKERS T, MAJIDI C. Closing the loop with liquid-metal sensing skin for autonomous soft robot gripping[C]// 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). Virtual, May 31-Aug. 31, 2020.
[19]   ANDERSON A, GISBY A, MCKAY G, et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines [J]. Journal of Applied Physics, 2012, 112(4): 41-49.
[20]   HUUNGUYEN C, ALICI G, MUTLU R. A compliant translational mechanism based on dielectric elastomer actuators[J]. Journal of Mechanical Design, 2014, 136(6): 061009.
[21]   BARTLETT W, TOLLEY T, OVERVELDE B, et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244): 161-165.
[22]   MICHAEL W, RYAN T, DANIEL J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617): 451-460.
[23]   MANTI M, HASSAN T, PASSETTI G, et al. A bioinspired soft robotic gripper for adaptable and effective grasping[J]. Soft Robot, 2015, 2(3): 107-116.
[24]   DONG X, AXINTE A, PALMER D, et al. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines [J]. Robotics and Computer Integrated Manufacturing, 2017, 44(1): 218-229.
[25]   隋立明,席作岩,刘亭羽. 多腔体式仿生气动软体驱动器的设计与制作[J]. 工程设计学报, 2017, 24(5): 511-517. doi:10.3785/j.issn.1006-754X.2017.05.004
SUI L M, XI Z Y, LIU T Y. Design and fabrication of a multi-cavity bionic pneumatic soft actuator [J]. Journal of Engineering Design, 2017, 24(5): 511-517.
doi: 10.3785/j.issn.1006-754X.2017.05.004
[26]   ROLF M, STEIL J J. Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant [C]// IEEE/RSJ International Conference on Intelligent Robots & Systems. Vilamoura, Oct. 7-12, 2012.
[27]   刘庚.一种变刚度柔性手爪设计及其性能研究[D].西安:西安理工大学,2020. doi:10.7498/aps.69.20191508
LIU G. Design and performance of a flexible hand claw with variable stiffness[D]. Xi’an: Xi'an University of Technology, 2020.
doi: 10.7498/aps.69.20191508
[28]   孙沂琳,张秋菊,陈宵燕.气动软体驱动器设计与建模[J].食品与机械,2018, 34(11): 101-105.
SUN Y L, ZHANG Q J, CHEN X Y. Design and modeling of pneumatic soft body drive [J]. Food and Machinery, 2018, 34(11): 101-105.
[29]   李明鑫,宁萌,陈海卫,等.一种新型软体驱动器的设计与研究[J].机械科学与技术,2021, 40(1): 33-39.
LI M X, NING M, CHEN H W, et al. Design and research of a new soft body drive[J]. Mechanical Science and Technology, 2021, 40(1): 33-39.
[30]   董虎,王保兴,李巍,等.基于单向气动驱动器的软体手变形机理[J].东华大学学报(自然科学版),2020, 46(2): 288-303.
DONG H, WANG B X, LI W, et al. Mechanism of soft hand deformation based on unidirectional pneumatic actuator [J]. Journal of Donghua University (Natural Science Edition), 2020, 46(2): 288-303.
[1] Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chinese Journal of Engineering Design, 2023, 30(4): 467-475.
[2] SUI Li-ming, XI Zuo-yan, LIU Ting-yu. Design and fabrication of multi-chamber biomimetic pneumatic soft actuators[J]. Chinese Journal of Engineering Design, 2017, 24(5): 511-517.