Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (6): 733-740    DOI: 10.3785/j.issn.1006-754X.2024.03.411
【Special Column】Key Technologies of Design, manufacture, operation and maintenance for New Energy Equipment and Their Applications under the Carbon Peaking and Carbon Neutrality Goals     
Research on cooling performance of natural air-cooled drive motor with internal oil-cooled chassis
Zehao HUANG1,2(),Yanjing XIE2(),Xiaoting ZHANG3,Yongpeng CAO3,Dong LI3
1.Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China
2.School of Vehicle Engineering, Chongqing University of Technology, Chongqing 400054, China
3.Chongqing Tsingshan Industrial Co. , Ltd. , Chongqing 402761, China
Download: HTML     PDF(2704KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problems of permanent magnet synchronous motors with high power density, large torque and small volume for vehicle driving, such as small effective heat dissipation area of traditional air-cooled structure and high temperature of internal components caused by electromagnetic loss during operation, an oil-air hybrid cooling method with natural air cooling of internal cavity oil-cooled chassis was proposed, to meet the temperature performance requirements of each component in the drive motor. The equivalent thermal network method was used to calculate the temperature of the stator winding, stator, permanent magnet and rotor in the drive motor under different working conditions, and the highest temperature of the drive motor appeared at the stator winding. Then, the temperature at the stator winding end of the drive motor was measured by experiment and compared with the simulation results. The relative error between the simulation results and the measured results was less than 5%. The results showed that the temperature of the stator winding and other components of the oil-air hybrid cooling drive motor under different working conditions dropped obviously and met the temperature performance requirements, which indicated that the oil-air hybrid cooling method had good heat dissipation performance and high cooling efficiency. The research results can provide reference for the development of heat dissipation systems for vehicle drive motors.



Key wordsdrive motor      loss      temperature      oil-air hybrid cooling      cooling performance     
Received: 27 December 2023      Published: 31 December 2024
CLC:  U 469.72  
Corresponding Authors: Yanjing XIE     E-mail: zehaohuang@cqut.edu.cn;xie17853569663@163.com
Cite this article:

Zehao HUANG,Yanjing XIE,Xiaoting ZHANG,Yongpeng CAO,Dong LI. Research on cooling performance of natural air-cooled drive motor with internal oil-cooled chassis. Chinese Journal of Engineering Design, 2024, 31(6): 733-740.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.411     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I6/733


内腔油冷机壳自然风冷驱动电机冷却性能研究

针对车辆驱动用高功率密度、大扭矩、小体积永磁同步电机的传统风冷结构有效散热面积小,以及运行时因存在电磁损耗而导致内部各部件温度过高的问题,提出了一种内腔油冷、机壳自然风冷的油风混合冷却方式,以满足驱动电机内部各部件的温度性能要求。采用等效热网络法计算了不同工况下驱动电机定子绕组、定子、永磁体和转子的温度,得到驱动电机的最高温度出现在定子绕组处。随后,通过实验对驱动电机定子绕组端部的温度进行了测量并与仿真结果进行对比,仿真结果与实测结果的相对误差均在5%以内。结果表明,不同工况下油风混合冷却驱动电机定子绕组及其余各部件的温度下降明显且均满足温度性能要求,说明油风混合冷却方式的散热性能良好,冷却效率高。研究结果可为车用驱动电机散热系统的研制提供参考。


关键词: 驱动电机,  损耗,  温度,  油风混合冷却,  冷却性能 
参数数值参数数值
定子铁心外径/mm160转子内径/mm30
定子铁心内径/mm122永磁体布置形式“V一”形
定子铁心长度/mm68极对数4
定子槽数/个48气隙厚度/mm0.9
转子外径/mm121额定功率/ kW14
Table 1 Basic parameters of drive motor
Fig.1 External characteristic curves of drive motor
运行参数

额定

工况

峰值

工况

高速

工况

超车加速

工况

电流/A127.540090292
转速/(r/min)5 4004 7008 5005 000~7 000
扭矩/(N·m)26891765
功率/kW14431447
Table 2 Operating parameters of drive motor under different working conditions
Fig.2 1/8 two-dimensional model of drive motor
损耗额定工况峰值工况高速工况超车加速工况
总损耗906.665 193.101 387.523 880.91
绕组铜耗350.094 322.00170.172 493.60
定子铁损542.90822.001 197.001 319.00
转子铁损13.4648.0019.4767.23
永磁体涡流损耗0.211.100.881.08
Table 3 Simulation results of drive motor loss under different working conditions
部件及介质等效导热系数/[W/(m·℃)]
定、转子30
绕组387
机壳150
气隙(空气)1.05
冷却油0.14
Table 4 Equivalent thermal conductivity of each component and medium of drive motor
Fig.3 Equivalent thermal network node distribution of cooling system for drive motor
部件对应节点部件对应节点
机壳1~3,33,34定子齿17~19
定子轭4~6转子20~25
绕组端部7,8,15,16转轴26~28
轴承29,30端盖31,32
Table 5 Corresponding nodes of each component of drive motor
Fig.4 Simulation results of winding temperature with air-cooling under peak working condition
Fig.5 Simplified three-dimensional model of drive motor with oil-air hybrid cooling
水平因素
甩油孔直径(A)/mm甩油孔数量(B)/个

进口流量(C)/

(L/min)

11.523
22.044
32.565
Table 6 Factor level table for orthogonal design experiment of internal oil-cooling structure
序号因素水平温度/℃
ABC
1111139.44
2123139.10
3132141.85
4213138.50
5222130.86
6231143.75
7312138.34
8321143.92
9333142.31
Table 7 Simulation results of winding temperature under different parameter combinations (rated working condition)
Fig.6 Temperature simulation results of each component of drive motor with oil-air hybrid cooling
工况最高温度参考温度
额定工况130.86145.00
高速工况143.52
Table 8 Maximum steady-state temperature of winding with oil-air hybrid cooling
工况最高温度/℃

出现时间/

s

运行20 s的

最高温度/℃

峰值工况175.9033.6145.41
超车加速工况176.8522.4163.43
Table 9 Maximum transient temperature of winding with oil-air hybrid cooling
Fig.7 Burial position of PT100 thermistor at the end of winding
Fig.8 Experimental bench for drive motor temperature measurement
Fig.9 Comparison between simulation and measured values of winding end temperature under different working conditions
最高温度/℃额定工况峰值工况高速工况超车加速工况
相对误差/%4.82.44.93.5
仿真值127.98174.80141.66175.67
实测值122.15170.63135.09169.73
Table 10 Comparison of maximum temperature of winding end under different working conditions
[1]   中国汽车工程学会. 节能与新能源汽车技术路线图2.0[M]. 北京: 机械工业出版社, 2021.
Society of Automotive Engineers of China. Technology roadmap for energy saving and new energy vehicles 2.0[M]. Beijing: China Machine Press, 2021.
[2]   鞠孝伟, 张凤阁, 程远, 等. 车用驱动电机扁线绕组关键问题研究综述[J]. 中国电机工程学报, 2024, 44(15): 6181-6199.
JU X W, ZHANG F G, CHENG Y, et al. Overview of key issues of flat wire winding of traction motor for electric vehicles[J]. Proceedings of the CSEE, 2024, 44(15): 6181-6199.
[3]   WAN Z P, DONG L J, WANG X W, et al. Design of an oil-cooling-system of new energy vehicle drive motor[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(12): 2810-2818.
[4]   YANG C X, ZHANG K, QIU H B. Temperature field analysis of oil-cooled heat dissipation in high-speed permanent magnet synchronous motor[J]. Journal of Physics: Conference Series, 2023, 2557(1): 012029.
[5]   靳永春, 陈俐, 邹宇晟, 等. 永磁同步驱动电机温度场研究进展综述[J]. 电气传动, 2023, 53(1): 28-38.
JIN Y C, CHEN L, ZOU Y S, et al. Review on research progress of PMSM temperature field[J]. Electric Drive, 2023, 53(1): 28-38.
[6]   WANG H M, ZHANG C J, GUO L Y, et al. Temperature field calculation of the hybrid heat pipe cooled permanent magnet synchronous motor for electric vehicles based on equivalent thermal network method[J]. World Electric Vehicle Journal, 2023, 14(6): 141.
[7]   张健, 朱锡庆, 张卓然, 等. 电励磁双凸极无刷直流发电机热网络建模与热特性研究[J]. 中国电机工程学报, 2023, 43(1): 318-329.
ZHANG J, ZHU X Q, ZHANG Z R, et al. Thermal network modeling and thermal characteristics analysis of doubly salient brushless DC generator with stator field winding[J]. Proceedings of the CSEE, 2023, 43(1): 318-329.
[8]   师蔚, 骆凯传, 张舟云. 基于热网络法的永磁电机温度在线估计[J]. 电工技术学报, 2023, 38(10): 2686-2697.
SHI W, LUO K C, ZHANG Z Y. On-line temperature estimation of permanent magnet motor based on lumped parameter thermal network method[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2686-2697.
[9]   SRINIVASAN C, YANG X F, SCHLAUTMAN J, et al. Conjugate heat transfer CFD analysis of an oil cooled automotive electrical motor[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(4): 1741-1753.
[10]   PARK M H, KIM S C. Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehicles[J]. Applied Thermal Engineering, 2019, 152: 582-593.
[11]   ZHAO A, DUWIG C, LIU C, et al. Parameter study for oil spray cooling on endwindings of electric machines via Eulerian-Lagrangian simulation[J]. Applied Thermal Engineering, 2023, 235: 121281.
[12]   GARUD K S, LEE M Y. Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123596.
[13]   陈小健, 李婷, 徐刚, 等. 油冷电机绕组喷淋冷却数值模拟与研究[J]. 汽车技术, 2023(10): 58-62. doi:10.1109/icems59686.2023.10344618
CHEN X J, LI T, XU G, et al. Numerical simulation and study on winding spray cooling of oil-cooled motors[J]. Automobile Technology, 2023(10): 58-62.
doi: 10.1109/icems59686.2023.10344618
[14]   陶大军, 潘博, 戈宝军, 等. 电动汽车驱动电机冷却技术研究发展综述[J]. 电机与控制学报, 2023, 27(4): 75-85. doi:10.15938/j.emc.2023.04.008
TAO D J, PAN B, GE B J, et al. Research and development of key technologies of electric vehicle drive motor[J]. Electric Machines and Control, 2023, 27(4): 75-85.
doi: 10.15938/j.emc.2023.04.008
[15]   武岳, 张志锋, 平佳齐. 高功率密度轴向磁通永磁电机新型水冷结构设计与温度场分析[J]. 中国电机工程学报, 2021, 41(24): 8295-8305.
WU Y, ZHANG Z F, PING J Q. New type water cooling structure design and temperature field analysis of high power density axial flux permanent magnet motor[J]. Proceedings of the CSEE, 2021, 41(24): 8295-8305.
[16]   朱发兴, 董月, 吴寒旭, 等. 摇摆激励喷雾冷却实验装置设计[J]. 工程设计学报, 2023, 30(4): 429-437.
ZHU F X, DONG Y, WU H X, et al. Design of spray cooling experiment device with swing excitation[J]. Chinese Journal of Engineering Design, 2023, 30(4): 429-437.
[17]   陈林, 闫业翠. 高转速下车用扁线电机交流损耗分析与优化[J]. 汽车技术, 2024(1): 34-43.
CHEN L, YAN Y C. Analysis and optimization of AC loss of flat wire motor for electric vehicle at high speed condition[J]. Automobile Technology, 2024(1): 34-43.
[18]   佟文明, 杨先凯, 鹿吉文, 等. 双层永磁体结构高速永磁电机转子涡流损耗解析模型[J/OL].电工技术学报:1-12(2023-12-11) [2024-01-20]. .
TONG W M, YANG X K, LU J W, et al. Rotor eddy current loss analytical model for high-speed permanent magnet motor based on double layer permanent magnet structure[J/OL]. Transactions of China Electrotechnical Society: 1-12(2023-12-11) [2024-01-20]. .
[19]   中华人民共和国工业和信息化部. 电动汽车用驱动电机系统可靠性试验方法: [S]. 北京: 中国标准出版社, 2022: 1-8.
Ministry of Industry and Information Technology of the People's Republic of China. Reliability test methods of drive motor system for electric vehicles: [S]. Beijing: Standards Press of China, 2022: 1-8.
[20]   张云, 张瑞宾, 莫德赟, 等. 电磁式发动机水冷系统流固耦合传热研究[J]. 工程设计学报, 2021, 28(3): 344-349.
ZHANG Y, ZHANG R B, MO D Y, et al. Research on fluid-solid coupling heat transfer of water cooling system of electromagnetic engine[J]. Chinese Journal of Engineering Design, 2021, 28(3): 344-349.
[21]   谢颖, 范伊杰, 蔡蔚, 等. 油冷式扁线电机油路结构优化设计及温度场计算[J]. 电机与控制学报, 2023, 27(5): 37-45.
XIE Y, FAN Y J, CAI W, et al. Oil circuit structure optimization design and temperature field calculation of oil cooled motor with hairpin winding[J]. Electric Machines and Control, 2023, 27(5): 37-45.
[1] Binghui JI,Jian MAO,Bo QIAN. Temperature control method for dual-nozzle FDM 3D printer based on genetic algorithm-fuzzy PID[J]. Chinese Journal of Engineering Design, 2024, 31(2): 151-159.
[2] Haiyan ZHU,Jiachao DENG,Qian XIAO,Jie LI,Yong YI. Simulation analysis of brake disc temperature field and brake pad wear of high-speed train under wheel-rail excitation[J]. Chinese Journal of Engineering Design, 2023, 30(6): 753-762.
[3] Yi LI,Guo-hua CHEN,Ming XIA,Bo LI. Design and simulation optimization of motorized spindle cooling system[J]. Chinese Journal of Engineering Design, 2023, 30(1): 39-47.
[4] Xu-hui ZHANG, Jian-xing YAN, Bing MA, Jia-shan JU, Qi-feng SHEN, Yu-jia WU. Research on abnormal detection method of side guard based on improved YOLOv5s[J]. Chinese Journal of Engineering Design, 2022, 29(6): 665-675.
[5] Xiao-hua ZHU,Cong LI,Wei-ji LIU,Bin TAN,Wen XU. Study on bottom hole thermal-fluid-solid coupling of PDC bit in strong abrasive formation[J]. Chinese Journal of Engineering Design, 2022, 29(4): 446-455.
[6] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[7] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[8] CHEN Long-hu, HAN Dong, ZHANG Wen-hui, YE Jun-jie, ZHANG Jing-hui, MA Zhi-yu. Design and performance study of acoustic attenuation structure of perforated tube coupled with metamaterial film[J]. Chinese Journal of Engineering Design, 2021, 28(4): 521-526.
[9] ZHONG Liang-chun, KUANG Yu-chun, SHU Feng, ZHANG Cong. Design method of screw motor interference considering the influence of pressure and temperature[J]. Chinese Journal of Engineering Design, 2021, 28(3): 321-328.
[10] WANG Chao, SUN Wen-xu, MA Xiao-jing, CHEN Ji-yang, LUAN Yi-zhong, MA Si-le. Temperature control system of HVPE growth equipment based on fuzzy control[J]. Chinese Journal of Engineering Design, 2020, 27(6): 765-770.
[11] MA Ya-chao, ZHANG Peng, HUANG Zhi-qiang, NIU Shi-wei, XIE Dou, DENG Rong. Prediction of dynamic wear trend of PDC bit under the influence of varying temperature and load[J]. Chinese Journal of Engineering Design, 2020, 27(5): 625-635.
[12] WU Cong-kui, HE Bai-yan, YUAN Peng-fei. Thermal-structural analysis of hoop deployable antenna with metal hinges[J]. Chinese Journal of Engineering Design, 2020, 27(3): 349-356.
[13] HUANG Zhi-qiang, ZHANG Wen-yuan, MA Ya-chao, LI Gang, WU Xiao-hong. Research on influence of clearance between sliding shoe and guide plate and oil supply flow on lubrication and cooling status of 6000HP fracturing pump[J]. Chinese Journal of Engineering Design, 2020, 27(1): 59-66.
[14] JIANG Hong-wan. Contrastive study on cutting energy of cemented carbide turning tools before and after improvement[J]. Chinese Journal of Engineering Design, 2019, 26(6): 700-705.
[15] HUANG Ze-hao, ZHANG Zhen-hua, HUANG Xu, LEI Wei. Analysis of time-varying characteristics of braking instability of drum brake[J]. Chinese Journal of Engineering Design, 2019, 26(6): 714-721.