【Special Column】Key Technologies of Design, manufacture, operation and maintenance for New Energy Equipment and Their Applications under the Carbon Peaking and Carbon Neutrality Goals
Research on cooling performance of natural air-cooled drive motor with internal oil-cooled chassis
1.Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China 2.School of Vehicle Engineering, Chongqing University of Technology, Chongqing 400054, China 3.Chongqing Tsingshan Industrial Co. , Ltd. , Chongqing 402761, China
Aiming at the problems of permanent magnet synchronous motors with high power density, large torque and small volume for vehicle driving, such as small effective heat dissipation area of traditional air-cooled structure and high temperature of internal components caused by electromagnetic loss during operation, an oil-air hybrid cooling method with natural air cooling of internal cavity oil-cooled chassis was proposed, to meet the temperature performance requirements of each component in the drive motor. The equivalent thermal network method was used to calculate the temperature of the stator winding, stator, permanent magnet and rotor in the drive motor under different working conditions, and the highest temperature of the drive motor appeared at the stator winding. Then, the temperature at the stator winding end of the drive motor was measured by experiment and compared with the simulation results. The relative error between the simulation results and the measured results was less than 5%. The results showed that the temperature of the stator winding and other components of the oil-air hybrid cooling drive motor under different working conditions dropped obviously and met the temperature performance requirements, which indicated that the oil-air hybrid cooling method had good heat dissipation performance and high cooling efficiency. The research results can provide reference for the development of heat dissipation systems for vehicle drive motors.
Zehao HUANG,Yanjing XIE,Xiaoting ZHANG,Yongpeng CAO,Dong LI. Research on cooling performance of natural air-cooled drive motor with internal oil-cooled chassis. Chinese Journal of Engineering Design, 2024, 31(6): 733-740.
Fig.1 External characteristic curves of drive motor
运行参数
额定
工况
峰值
工况
高速
工况
超车加速
工况
电流/A
127.5
400
90
292
转速/(r/min)
5 400
4 700
8 500
5 000~7 000
扭矩/(N·m)
26
89
17
65
功率/kW
14
43
14
47
Table 2Operating parameters of drive motor under different working conditions
Fig.2 1/8 two-dimensional model of drive motor
损耗
额定工况
峰值工况
高速工况
超车加速工况
总损耗
906.66
5 193.10
1 387.52
3 880.91
绕组铜耗
350.09
4 322.00
170.17
2 493.60
定子铁损
542.90
822.00
1 197.00
1 319.00
转子铁损
13.46
48.00
19.47
67.23
永磁体涡流损耗
0.21
1.10
0.88
1.08
Table 3Simulation results of drive motor loss under different working conditions
部件及介质
等效导热系数/[W/(m·℃)]
定、转子
30
绕组
387
机壳
150
气隙(空气)
1.05
冷却油
0.14
Table 4Equivalent thermal conductivity of each component and medium of drive motor
Fig.3 Equivalent thermal network node distribution of cooling system for drive motor
部件
对应节点
部件
对应节点
机壳
1~3,33,34
定子齿
17~19
定子轭
4~6
转子
20~25
绕组端部
7,8,15,16
转轴
26~28
轴承
29,30
端盖
31,32
Table 5Corresponding nodes of each component of drive motor
Fig.4 Simulation results of winding temperature with air-cooling under peak working condition
Fig.5 Simplified three-dimensional model of drive motor with oil-air hybrid cooling
水平
因素
甩油孔直径(A)/mm
甩油孔数量(B)/个
进口流量(C)/
(L/min)
1
1.5
2
3
2
2.0
4
4
3
2.5
6
5
Table 6Factor level table for orthogonal design experiment of internal oil-cooling structure
序号
因素水平
温度/℃
A
B
C
1
1
1
1
139.44
2
1
2
3
139.10
3
1
3
2
141.85
4
2
1
3
138.50
5
2
2
2
130.86
6
2
3
1
143.75
7
3
1
2
138.34
8
3
2
1
143.92
9
3
3
3
142.31
Table 7Simulation results of winding temperature under different parameter combinations (rated working condition)
Fig.6 Temperature simulation results of each component of drive motor with oil-air hybrid cooling
工况
最高温度
参考温度
额定工况
130.86
145.00
高速工况
143.52
Table 8Maximum steady-state temperature of winding with oil-air hybrid cooling
工况
最高温度/℃
出现时间/
s
运行20 s的
最高温度/℃
峰值工况
175.90
33.6
145.41
超车加速工况
176.85
22.4
163.43
Table 9Maximum transient temperature of winding with oil-air hybrid cooling
Fig.7 Burial position of PT100 thermistor at the end of winding
Fig.8 Experimental bench for drive motor temperature measurement
Fig.9 Comparison between simulation and measured values of winding end temperature under different working conditions
最高温度/℃
额定工况
峰值工况
高速工况
超车加速工况
相对误差/%
4.8
2.4
4.9
3.5
仿真值
127.98
174.80
141.66
175.67
实测值
122.15
170.63
135.09
169.73
Table 10Comparison of maximum temperature of winding end under different working conditions
[1]
中国汽车工程学会. 节能与新能源汽车技术路线图2.0[M]. 北京: 机械工业出版社, 2021. Society of Automotive Engineers of China. Technology roadmap for energy saving and new energy vehicles 2.0[M]. Beijing: China Machine Press, 2021.
[2]
鞠孝伟, 张凤阁, 程远, 等. 车用驱动电机扁线绕组关键问题研究综述[J]. 中国电机工程学报, 2024, 44(15): 6181-6199. JU X W, ZHANG F G, CHENG Y, et al. Overview of key issues of flat wire winding of traction motor for electric vehicles[J]. Proceedings of the CSEE, 2024, 44(15): 6181-6199.
[3]
WAN Z P, DONG L J, WANG X W, et al. Design of an oil-cooling-system of new energy vehicle drive motor[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(12): 2810-2818.
[4]
YANG C X, ZHANG K, QIU H B. Temperature field analysis of oil-cooled heat dissipation in high-speed permanent magnet synchronous motor[J]. Journal of Physics: Conference Series, 2023, 2557(1): 012029.
[5]
靳永春, 陈俐, 邹宇晟, 等. 永磁同步驱动电机温度场研究进展综述[J]. 电气传动, 2023, 53(1): 28-38. JIN Y C, CHEN L, ZOU Y S, et al. Review on research progress of PMSM temperature field[J]. Electric Drive, 2023, 53(1): 28-38.
[6]
WANG H M, ZHANG C J, GUO L Y, et al. Temperature field calculation of the hybrid heat pipe cooled permanent magnet synchronous motor for electric vehicles based on equivalent thermal network method[J]. World Electric Vehicle Journal, 2023, 14(6): 141.
[7]
张健, 朱锡庆, 张卓然, 等. 电励磁双凸极无刷直流发电机热网络建模与热特性研究[J]. 中国电机工程学报, 2023, 43(1): 318-329. ZHANG J, ZHU X Q, ZHANG Z R, et al. Thermal network modeling and thermal characteristics analysis of doubly salient brushless DC generator with stator field winding[J]. Proceedings of the CSEE, 2023, 43(1): 318-329.
[8]
师蔚, 骆凯传, 张舟云. 基于热网络法的永磁电机温度在线估计[J]. 电工技术学报, 2023, 38(10): 2686-2697. SHI W, LUO K C, ZHANG Z Y. On-line temperature estimation of permanent magnet motor based on lumped parameter thermal network method[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2686-2697.
[9]
SRINIVASAN C, YANG X F, SCHLAUTMAN J, et al. Conjugate heat transfer CFD analysis of an oil cooled automotive electrical motor[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(4): 1741-1753.
[10]
PARK M H, KIM S C. Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehicles[J]. Applied Thermal Engineering, 2019, 152: 582-593.
[11]
ZHAO A, DUWIG C, LIU C, et al. Parameter study for oil spray cooling on endwindings of electric machines via Eulerian-Lagrangian simulation[J]. Applied Thermal Engineering, 2023, 235: 121281.
[12]
GARUD K S, LEE M Y. Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123596.
[13]
陈小健, 李婷, 徐刚, 等. 油冷电机绕组喷淋冷却数值模拟与研究[J]. 汽车技术, 2023(10): 58-62. doi:10.1109/icems59686.2023.10344618 CHEN X J, LI T, XU G, et al. Numerical simulation and study on winding spray cooling of oil-cooled motors[J]. Automobile Technology, 2023(10): 58-62.
doi: 10.1109/icems59686.2023.10344618
[14]
陶大军, 潘博, 戈宝军, 等. 电动汽车驱动电机冷却技术研究发展综述[J]. 电机与控制学报, 2023, 27(4): 75-85. doi:10.15938/j.emc.2023.04.008 TAO D J, PAN B, GE B J, et al. Research and development of key technologies of electric vehicle drive motor[J]. Electric Machines and Control, 2023, 27(4): 75-85.
doi: 10.15938/j.emc.2023.04.008
[15]
武岳, 张志锋, 平佳齐. 高功率密度轴向磁通永磁电机新型水冷结构设计与温度场分析[J]. 中国电机工程学报, 2021, 41(24): 8295-8305. WU Y, ZHANG Z F, PING J Q. New type water cooling structure design and temperature field analysis of high power density axial flux permanent magnet motor[J]. Proceedings of the CSEE, 2021, 41(24): 8295-8305.
[16]
朱发兴, 董月, 吴寒旭, 等. 摇摆激励喷雾冷却实验装置设计[J]. 工程设计学报, 2023, 30(4): 429-437. ZHU F X, DONG Y, WU H X, et al. Design of spray cooling experiment device with swing excitation[J]. Chinese Journal of Engineering Design, 2023, 30(4): 429-437.
[17]
陈林, 闫业翠. 高转速下车用扁线电机交流损耗分析与优化[J]. 汽车技术, 2024(1): 34-43. CHEN L, YAN Y C. Analysis and optimization of AC loss of flat wire motor for electric vehicle at high speed condition[J]. Automobile Technology, 2024(1): 34-43.
[18]
佟文明, 杨先凯, 鹿吉文, 等. 双层永磁体结构高速永磁电机转子涡流损耗解析模型[J/OL].电工技术学报:1-12(2023-12-11) [2024-01-20]. . TONG W M, YANG X K, LU J W, et al. Rotor eddy current loss analytical model for high-speed permanent magnet motor based on double layer permanent magnet structure[J/OL]. Transactions of China Electrotechnical Society: 1-12(2023-12-11) [2024-01-20]. .
[19]
中华人民共和国工业和信息化部. 电动汽车用驱动电机系统可靠性试验方法: [S]. 北京: 中国标准出版社, 2022: 1-8. Ministry of Industry and Information Technology of the People's Republic of China. Reliability test methods of drive motor system for electric vehicles: [S]. Beijing: Standards Press of China, 2022: 1-8.
[20]
张云, 张瑞宾, 莫德赟, 等. 电磁式发动机水冷系统流固耦合传热研究[J]. 工程设计学报, 2021, 28(3): 344-349. ZHANG Y, ZHANG R B, MO D Y, et al. Research on fluid-solid coupling heat transfer of water cooling system of electromagnetic engine[J]. Chinese Journal of Engineering Design, 2021, 28(3): 344-349.
[21]
谢颖, 范伊杰, 蔡蔚, 等. 油冷式扁线电机油路结构优化设计及温度场计算[J]. 电机与控制学报, 2023, 27(5): 37-45. XIE Y, FAN Y J, CAI W, et al. Oil circuit structure optimization design and temperature field calculation of oil cooled motor with hairpin winding[J]. Electric Machines and Control, 2023, 27(5): 37-45.