|
|
Kinematics analysis of lower limb rehabilitation exoskeleton mechanism based on human-machine closed chain |
LI Jing1, ZHU Ling-yun1,2, GOU Xiang-feng1,2 |
1. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China |
|
|
Abstract Aiming at the motion deviation in the use of lower limb rehabilitation exoskeleton, the structure design and kinematics analysis of a lower limb rehabilitation exoskeleton was completed based on the human-exoskeleton movement model and adjustment model. Firstly, using the theory of human-machine deviation variable and the theory of human-machine compatibility, the human-exoskeleton adjustment model was established by adding the passive degree of freedom to the human-exoskeleton movement model. Based on the human-exoskeleton movement model and the human-exoskeleton adjustment model, the lower limb rehabilitation exoskeleton was designed. The lower limb rehabilitation exoskeleton provided movement mode and adjustment mode, which could be switched by the sliding deviation detection device of the human-machine. The kinematics model of single lateral exoskeleton mechanical leg was established, and the motion equation and the linkage transformation matrix were solved. The MATLAB and ADAMS software were used to simulate the exoskeleton model and the human-exoskeleton model, the simulation results were compared and analyzed. The results showed that the moving space in the sagittal plane of the exoskeleton could cover the end trajectory of the human body. The movement trend and theoretical movement trend of the exoskeleton joints were basically consistent, and the adjustment mode compensated the motion deviation of the movement mode,which proved the rationality of the lower limb rehabilitation exoskeleton. The lower limb rehabilitation exoskeleton mechanism based on human-machine closed chain can compensate the motion deviation and avoid the secondary damage. It can be used for reference in the practical design of exoskeleton, and provides a theoretical basis for exoskeleton mechanism research.
|
Received: 28 April 2018
Published: 28 February 2019
|
|
基于人机闭链的下肢康复外骨骼机构运动学分析
针对下肢康复外骨骼在使用过程中出现的运动偏差,基于人体-外骨骼运动模型与调整模型,完成了下肢康复外骨骼的结构设计与运动学分析。运用人机偏差变量理论和人机相容理论,在人体-外骨骼运动模型上添加被动自由度,建立了人体-外骨骼调整模型。根据2种模型设计了下肢康复外骨骼,该外骨骼提供运动模式和调整模式,可通过人机滑动偏差检测装置切换使用模式。通过建立单侧外骨骼机械腿运动学模型,求解其运动方程和连杆变换矩阵。运用MATLAB和ADAMS软件对外骨骼模型和人体-外骨骼模型进行运动学仿真,并对比分析仿真结果。结果表明:下肢康复外骨骼在矢状面内的运动空间可以覆盖人体末端运动轨迹,该外骨骼各关节仿真运动趋势与理论运动趋势基本一致;调整模式能够补偿运动模式产生的运动偏差,验证了下肢康复外骨骼机构设计的合理性。研究表明基于人机闭链设计的下肢康复外骨骼机构能够较好地补偿运动偏差,避免因人机滑动引起的人体二次损伤,为外骨骼的实用化设计与研究提供了理论基础。
关键词:
下肢康复外骨骼,
人体-外骨骼调整模型,
结构设计,
运动学分析
|
|
[1] MENG W, LIU Q, ZHOU Z, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation[J]. Mechatronics, 2015, 31:132-145.
[2] HIDLER J, WISMAN W, NECKEL N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis[J]. Clinical Biomechanics, 2008, 23(10):1251-1259.
[3] TALATY M, ESQUENAZI A, BRICENO J E. Differentiating ability in users of the ReWalkTM powered exoskeleton:an analysis of walking kinematics[J]. Rehabilitation Robotics, 2013, 13(6):1363-1369.
[4] TAMEZDUQUE J, COBIANUGALDE R, KILICARSLAN A, et al. Real-time strap pressure sensor system for powered exoskeletons[J]. Sensors, 2015, 15(2):4550-4563.
[5] ZHANG S, WANG C, WU X, et al. Real time gait planning for a mobile medical exoskeleton with crutche[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics, Zhuhai, Dec. 6-9, 2015.
[6] 李剑锋,吴希瑶,邓楚慧,等.人-机运动相容型下肢康复训练外骨骼机构的构型设计与分析[J].中国生物医学工程学报,2012,31(5):720-728. LI Jian-feng, WU Xi-yao, DENG Chu-hui, et al. Configuration design and analysis of the human-machine kinematically compatible type exoskeleton mechanism for lower limb rehabilitation training[J]. Chinese Journal of Biomedical Engineering, 2012, 31(5):720-728.
[7] SCHIELE A, VAN FRANS C T D H. Kinematic design to improve ergonomics in human machine interaction[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2006, 14(4):456-469.
[8] 李剑锋,刘钧辉,张雷雨,等.人机相容型肩关节康复外骨骼机构的运动学与灵活性分析[J].机械工程学报,2018,54(3):46-54. LI Jian-feng, LIU Jun-hui, ZHANG Lei-yu, et al. Kinematics and dexterity analysis of the human-machine compatible exoskeleton mechanism for shoulder joint rehabilitation[J]. Journal of Mechanical Engineering, 2018, 54(3):46-54.
[9] TORTORA Gerard J, DERRICKSON Bryan H. Principles of anatomy and physiology[M]. New Jersey:Wiley, 2011:631-637.
[10] 邵明旭,王斐,殷腾龙,等.人体下肢生物力学建模研究进展[J].智能系统学报,2015,10(4):518-527. SHAO Ming-xu, WANG Fei, YIN Teng-long, et al. Research progress on the human lower limb biomechanical modeling[J]. CAAI Transactions on Intelligent Systems, 2015, 10(4):518-527.
[11] 陈殿生,宁萌,阮子喆,等.电动往复式步态矫形器机构优化设计[J].机械工程学报,2015,51(21):33-41. CHEN Dian-sheng, NING Meng, RUAN Zi-zhe, et al. Mechanism design and optimization for electric reciprocating gait orthoses[J]. Journal of Mechanical Engineering, 2015, 51(21):33-41.
[12] 李怀仙,程文明,张铭奎.基于人机偏差模型的自对齐髋关节外骨骼解耦设计与计算[J].机器人,2017,39(5):627-637. LI Huai-xian, CHENG Wen-ming, ZHANG Ming-kui. Decoupled design and calculation of the self-aligned hip joint exoskeletons based on the human-robot misalignment model[J]. Robot, 2017, 39(5):627-637.
[13] 张启先.空间机构的分析与综合[M].北京:机械工业出版社,1984:49-69. ZHANG Qi-xian. Analysis and synthesis of space institutions[M]. Beijing:China Machine Press, 1984:49-69.
[14] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics-Transactions of the ASME, 1955, 22:215-221.
[15] VAUGHAN C L, DAVIS B L, O'CONNOR J C. Dynamics of human gait[M]. Cape Town:Human Kinetics Publishers, 1999:61-79.
[16] 刘小龙,赵彦峻,葛文庆,等.医疗助力下肢外骨骼设计及动力学仿真分析[J].工程设计学报,2016,23(4):327-332. LIU Xiao-long, ZHAO Yan-jun, GE Wen-qing, et al. Design and dynamics simulation analysis of medical disabled lower limb exoskeleton[J]. Chinese Journal of Engineering Design, 2016, 23(4):327-332. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|