Please wait a minute...
Chinese Journal of Engineering Design  2013, Vol. 20 Issue (1): 22-26    DOI:
    
Space dynamic motion analysis and optimization of transmission shaft based on suspension motion model
 ZHANG  Zheng-Long1, ZHAO  Liang1,2
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China; 
2.Automotive Technology Limited Company of Konghui, Liuzhou 545000, China
Download: HTML     PDF(717KB)
Export: BibTeX | EndNote (RIS)      

Abstract  To improve the rationality and adaptability of spatial arrangement for transmission shaft,design optimization should be carried out with the characteristics of the suspensions space motion.Based on the dynamic conditions when the vehicle with leaf springs was actually travelling, kinematics analysis of the vehicles leaf springs was conducted. A transmission shaft motion model based on suspension space motion model was established, optimization goal of dynamic space of transmission shaft was presented,the linear weighting method was used to transform the multiobjective optimization into single objective optimization and small population genetic algorithm was selected to be the optimization algorithm. A transmission layout scheme with smaller average of equivalent angle was gained through example calculation, vibration and noise were effectively reduced. The results indicate that the transmission shaft space dynamic design based on leaf spring motion is more reasonable than the traditional single load optimization design,and has higher optimization efficiency and the adaptability of optimization results is better.

Key wordstransmission shaft      leaf spring      suspension      kinematics      genetic algorithm     
Published: 28 February 2013
Cite this article:

ZHANG Zheng-Long, ZHAO Liang. Space dynamic motion analysis and optimization of transmission shaft based on suspension motion model. Chinese Journal of Engineering Design, 2013, 20(1): 22-26.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2013/V20/I1/22


基于悬架运动模型的传动轴空间动态运动分析和优化

为提高传动轴空间布置的合理性和适应性, 优化设计需要结合悬架的空间运动特性.从板簧汽车实际行驶的动态工况出发,对汽车板簧进行了运动学分析,建立基于悬架空间运动模型的传动轴运动模型,并提出了传动轴动态空间的优化目标,利用线性加权的方法,将多目标优化问题转化为单目标优化问题,选择小种群遗传算法作为优化算法.实例计算得到了平均当量夹角更小的传动布置方案,有效减小了振动和噪声.优化结果表明:基于板簧运动的传动轴空间动态设计,比传统的单一载荷下的优化设计更为合理,优化效率更高,并且优化结果的适应性更好.

关键词: 传动轴,  钢板弹簧,  悬架,  运动学,  遗传算法 
[1] Chun-yan ZHANG,Bing DING,Zhi-qiang HE,Jie YANG. Kinematics analysis and optimization of rotary multi-legged bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 327-338.
[2] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[3] Chuan-long XIN,Rong ZHENG,Fu-lin REN,Hong-guang LIANG. Suspension balance analysis and counterweight optimization design of AUV docking device[J]. Chinese Journal of Engineering Design, 2022, 29(2): 176-186.
[4] DING Shu-yong, ZHANG Zheng, DING Wen-jie, LIN Yong. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
[5] YAN Guo-ping, ZHOU Jun-hong, ZHONG Fei, LI Zhe, ZHOU Hong-di, PENG Zhen-ao. Design and optimization of magnetic compression correction device for paper-plastic composite bag[J]. Chinese Journal of Engineering Design, 2021, 28(3): 367-373.
[6] LI Hai-yue, CHENG Ze, ZHAO Dan-ni, WANG Hao-wei, LI De-yong, ZHANG Jia-bo, SONG Xiao-dong, ZHAO Lin-na. Research on multi-degree-of-freedom microgravity simulation deployment test system based on suspension method and air flotation method[J]. Chinese Journal of Engineering Design, 2020, 27(4): 508-515.
[7] WEI Ya-jun, QIU Guo-liang, DING Guang-he, YANG Liang, LIU Heng. A structural optimization design method for heavy-duty palletizing robot[J]. Chinese Journal of Engineering Design, 2020, 27(3): 332-339.
[8] ZHANG Jun-bao, HOU Hong-juan, CUI Guo-hua, LIU Jian. Research on number and position distribution of ropes for a class of rigid-flexible cooperative hybrid robot mechanism[J]. Chinese Journal of Engineering Design, 2020, 27(3): 364-372.
[9] LIU Zhuo, LIAN Bin-bin, LI Qi. Kinematic analysis of Exechon parallel robot based on finite and instantaneous screw theory[J]. Chinese Journal of Engineering Design, 2020, 27(3): 357-363.
[10] YAO Jia-ling, TANG Zheng, BAI Ya-nan. Coordinated control of roll and smoothness of vehicle based on shear magnetorheological damper[J]. Chinese Journal of Engineering Design, 2020, 27(2): 191-198.
[11] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[12] HE Xiao-ying, GAO Xing-yu, WANG Hai-jian, PENG Yan-hua, LI Yu. Stability analysis of 7-DOF dual-arm cooperative robot operation[J]. Chinese Journal of Engineering Design, 2019, 26(6): 706-713.
[13] LIU Chun-qing, WANG Wen-han. Parameter optimization of generating method spherical precision grinding based on ANN-GA[J]. Chinese Journal of Engineering Design, 2019, 26(4): 395-402.
[14] MA Tian-bing, WANG Xiao-dong, DU Fei, WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Chinese Journal of Engineering Design, 2019, 26(2): 170-176.
[15] LI Jing, ZHU Ling-yun, GOU Xiang-feng. Kinematics analysis of lower limb rehabilitation exoskeleton mechanism based on human-machine closed chain[J]. Chinese Journal of Engineering Design, 2019, 26(1): 65-72,109.