|
|
Research on methods of thermal error compensating and restraining in giant magnetostrictive actuator |
WU Yi-Jie, XU Jie |
Institute of Modern Manufactural Engineering,Zhejiang University,Hangzhou 310027,China |
|
|
Abstract As a typical modern physical property actuator, giant magnetostrictive actuator (GMA) has a wide application prospect in the fields of precision and ultra-precision machining. This method, as a key technology of GMA, could eliminating or restraining adverse influence triggered by rise of temperature and improve GMA's output precision by taking measure of compensating or restraining thermal error of GMA. Aiming at this problem, six methods for thermal error compensation and restraining is presented. Principles of these methods were introduced as well as characteristics and application situations. Meantime, a series of experiments using our phase changing water cooling combination temperature control system are conducted and satisfactory results are obtained. The results demonstrate that the proposed theorems and method can effectively direct research and design of GMA in various situations.
|
Published: 28 August 2005
|
超磁致伸缩执行器热误差补偿及抑制方法研究
超磁致伸缩执行器是典型的物性型现代执行器,在精密、超精密加工领域有着广阔的应用前景。对超磁致伸缩执行器的热误差实施有效的补偿或抑制等措施,可以消除或抑制由于温升带来的不利影响,提高执行器的输出精度,这是超磁致伸缩执行器的关键技术之一。针对这一问题,提出了6种热误差补偿及抑制方法,并介绍了这些方法的实现原理,分析了它们的特点及适用场合,同时,对自行研制的相变水冷组合温控系统进行了试验,取得满意的效果。提出的热误差补偿与抑制方法可用于指导各种场合的超磁致伸缩执行器的研究和开发。
关键词:
超磁致伸缩执行器,
热误差,
补偿,
抑制
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|