Please wait a minute...
Chinese Journal of Engineering Design  2020, Vol. 27 Issue (2): 146-153    DOI: 10.3785/j.issn.1006-754X.2020.00.025
Design Theory and Methodology     
Equal-area smoothing compensation control method for high-precision ultra-high pressure liquid pump
TAN Xu, WANG Xiao-yang, YIN Shen, ZENG Ting, WEI Xing-ya
Beijing Spacecrafts Co., Ltd., Beijing 100094, China
Download: HTML     PDF(3216KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Aiming at the problem that the motor jitters at the acceleration inflexion point during the operation of high-precision ultra-high pressure liquid pump,an equal-area smoothing compensation control method is proposed. The running curve of liquid pump was treated smoothly to ensure the liquid phase pump smooth transition at the acceleration inflexion point with high initial speed and no jitter. The displacement reduced due to smoothing treatment was compensated to ensure that the displacement was same before the end of the single operation cycle of the liquid pump, so that the total amount of liquid suction and discharge of the liquid pump remained unchanged.Finally, the motor running test, flow accuracy detect test, response speed detect test and ultra-efficient separation test were carried out to prove the feasibility of the equal-area smoothing compensation control method. The tested result showed that the equal-area smoothing compensation control method could solve the problem of motor jitterd at the acceleration inflexion point with high initial speed, and the flow precision of the output liquid of liquid pump was improved from 0.081% to 0.055%. The eaqul area smoothing compensation control method effectively improves the flow precision of the output liquid of liqud pump, and has the characteristics of strong instantaneity and high calculation accuracy, which can provide a certain theoretical basis for improving the efficiency of sample detection.

Key wordsliquid pump      smoothing compensation      equal-area      acceleration inflexion point     
Received: 11 October 2019      Published: 28 April 2020
CLC:  TP 271.3  
Cite this article:

TAN Xu, WANG Xiao-yang, YIN Shen, ZENG Ting, WEI Xing-ya. Equal-area smoothing compensation control method for high-precision ultra-high pressure liquid pump. Chinese Journal of Engineering Design, 2020, 27(2): 146-153.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2020.00.025     OR     https://www.zjujournals.com/gcsjxb/Y2020/V27/I2/146


高精度超高压液相泵等面积平滑补偿控制方法

针对高精度超高压液相泵运行时易在加速度拐点处出现电机抖动的问题,提出了一种等面积平滑补偿控制方法。对液相泵运行曲线进行平滑处理,确保液相泵在初始速度较高的加速度拐点处平稳过渡,不产生抖动;对因平滑处理而减小的位移进行补偿,确保在液相泵单个运行周期结束前补齐位移,使得液相泵的吸入液体总量与排出液体总量不变。最后通过电机运行试验、流量精度检测试验、响应速度检测试验、超高效分离试验来验证所提方法的可行性。试验结果表明:等面积平滑补偿控制方法解决了电机在高初始速度的加速度拐点处抖动的问题,使液相泵输出液体的流量精度从0.081%提高到0.055%。等面积平滑补偿控制方法有效提高了液相泵输出液体的流量精度,具有实时性强、计算精度高等特点,为提高样品检测效率提供了一定的理论依据。

关键词: 液相泵,  平滑补偿,  等面积,  加速度拐点 
[1] 沈从华. 超效液相色谱系统构建及其色谱性能评价[D]. 南京:南京理工大学化工学院,2014:13-20. SHENCong-hua. Construction and evaluation of super performance liquid chromatography[D]. Nanjing: Nanjing University of Science & Technology, School of Chemical Engineering, 2014: 13-20.
[2] 梁振,张丽华,李彤,等. 多维液相色谱仪的研制与开发[J]. 现代科学仪器,2008(4):38-41. LIANGZhen, ZHANGLi-hua, LITong, et al. Development of multi-dimensional liquid chromatography instrumentation[J]. Modern Scientific Instruments, 2008(4): 38-41.
[3] 刘颖,王志刚,王红,等. 步进电机升降频的优化算法[J]. 微电机,2010,43(8):93-97. doi: 10.3969/j.issn.1001-6848.2010.08.024 LIUYing, WANGZhi-gang, WANGHong, et al. An optimization algorithm to accelerate or decelerate speed of step motor[J]. Micromotors, 2010, 43(8): 93-97.
[4] 王邦继,刘庆想,周磊,等. 步进电机控制系统建模及加减速曲线优化[J]. 电机与控制学报,2018,22(1):37-42,52. doi: 10.15938/j.emc.2018.01.006 WANGBang-ji, LIUQing-xiang, ZHOULei, et al. Modeling of stepper motor control system and optimization of acceleration and deceleration curve[J]. Electric Machines and Control, 2018, 22(1): 37-42, 52.
[5] ACARNLEYP. Stepping motors: a guide to theory and practice[M]. London: The Institution of Electrical Engineers, 2002: 27-35.
[6] 史敬灼,徐殿国,王宗培. 二相混合式步进电机模型参数的辨识[J]. 电工技术学报,2001,16(4):12-15,38. doi: 10. 3321/j.issn:1000-6753.2001.04.003 SHIJing-zhuo, XUDian-guo, WANGZong-pei. Stepping motor position servo system with fuzzy control[J]. Transactions of China Electrotechnical Society, 2001, 16(4): 12-15, 38.
[7] Chi-weiROU, SHIHC L, LEE W Y. Planning S-curve in the croodinated PTP motion of multi-axis machines under velocity acceler action and jerk constrains[J]. Journal of the Chinese Institute of Electrical Engineering, 2003, 10(3): 221-234.
[8] 廖永富,罗忠,冉全. 一种新型S形曲线步进电机加减速控制方法[J]. 湖北第二师范学院学报,2015,32(8):32-35. doi: 10.3969/j.issn.1674-344X.2015.08.008 LIAOYong-fu, LUOZhong, RANQuan. A new S-curve acceleration and deceleration method for controlling stepping motor[J]. Journal of Hubei University of Education, 2015, 32(8): 32-35.
[9] 杨超,张冬泉. 基于S曲线的步进电机加减速的控制[J]. 机电工程,2011,28(7):813-817. doi: 10.3969/j.issn.1001- 4551.2011.07.011 YANGChao, ZHANGDong-quan. Stepper motor's acceleration and speed control based on S-curve [J]. Journal of Mechanical & Electrical Engineering, 2011, 28(7): 813-817.
[10] ELSODANYN M, REZEKAS F, MAHAREMN A. Adaptive PID control of a stepper motor driving a flexible rotor[J]. World Pumps, 2011, 50(2): 127-136. doi: 10.1016/j.aej.2010.08.002
[11] 吕东阳,王显军. 基于模糊PID控制的电机转台伺服系统[J]. 计算机应用,2014,34(增):166-168. doi:10.3969/j.issn.1009-8119.2015.10.033 Dong-yangLü, WANGXian-jun. Servo motor system based on fuzzy pid control[J]. Journal of Computer Applications, 2014, 34(Supplement): 166-168.
[12] 李泓文,聂大林. 国产高精度超高压液相泵梯度洗脱性能分析[J]. 仪器仪表用户,2019,26(1):38-42. doi: 10. 3969/j.issn.1671-1041.2019.01.012 LIHong-wen. NIE Da-lin. Analysis of gradient elution performance of one UHPLC pump made in china[J]. Electronic Instrumentation Customers, 2019, 26(1): 38-42.
[13] 李亮,陈笑艳,钟大放. 液相色谱-质谱联用技术在药物代谢产物鉴定中的应用[J]. 质谱学报,2017,38(4):49-53. doi: 10.7538/zpxb.2016.0208 LILiang, CHENXiao-yan, ZHONGDa-fang. Applications of liguid chromatography-mass spectrometry in drug metabolite identification[J]. Journal of Chinese Mass Spectrometry Society, 2017, 38(4): 49-53.
No related articles found!