Abstract Characterizing Braille on the smart touch screen mobile terminal is a practically significant but difficult task. In order to enable the visually impaired obtain the information by touching the Braille on the smart touch screen mobile terminal, three common Chinese Braille encoding methods based on mobile terminal with variable friction tactile were proposed, which were general Braille encoding method,tone embedding encoding method and four-lines two-columns encoding method.According to the principle that the ultrasonic vibration generated by piezoelectric sensor could produce variable friction tactile on the object surface, the Chinese Braille tactile code was realized on the smart mobile terminal. Through two systematic experiments on 12 blind users, the usability of encoding method was evaluated from the aspects of reading efficiency, reading accuracy and user satisfaction. Firstly, the usability of three encoding methods was evaluated (experiment 1). Based on the results of experiment 1, the four-lines two-columns encoding method was selected to compare with the vibration motor tactile feedback encoding method based on right-sliding touch reading mode for usability. The results of experiment 1 showed that the average reading efficiency of three encoding methods was 8.82, 4.91 and 4.12 s/Chinese character, and the average reading accuracy was 98.6%, 96.8%, and 98.6%, respectively. Among them, the score of four-lines two-columns encoding method was the highest. The results of experiment 2 showed that,compared with the vibration motor tactile feedback encoding method based on right-sliding touch reading mode, the four-lines two-columns encoding method had higher reading efficiency, reading accuracy and user satisfaction. In conclusion, using the four-lines two-columns encoding method is able to encode and read the common Chinese Braille on the mobile terminal, which can provide a new way for the visually impaired to read Braille on smart mobile terminal.
ZHANG Fan, CHU Shao-wei, JI Na-ye. Chinese Braille encoding design for mobile terminal with variable-friction tactile. Chinese Journal of Engineering Design, 2020, 27(2): 154-161.
[1] 中国残疾人联合会教育就业部.国家通用盲文方案: GF0019—2018[S]. 北京:求真出版社,2018:1. Ministry of Education and Employment, China Disabled Persons' Federation. Chinese common Braille scheme: GF0019-2018[S].Beijing: Publishing House of Qiuzhen, 2018: 1. [2] 钟经华. 国家通用盲文方案研究[J]. 中国特殊教育,2018(6):41-46. doi:10.3969/j.issn.1007-3728.2018.06.008 ZHONGJing-hua.On the common Chinese Braille [J]. Chinese Journal of Special Education, 2018(6): 41-46. [3] AL-QUDAHZ, DOUSHI A, ALKHATEEBF, et al. Reading Braille on mobile phones: a fast method with low battery power consumption[C]//Proceedings of the 2011 International Conference on User Science and Engineering (i-USEr). Shah Alam, Selangor, Nov. 29-Dec. 1, 2011.doi:10.1109/iUSEr.2011.6150549 [4] 褚少微,朱科颖. 手机盲文触感阅读方法的设计与评估[J]. 北京理工大学学报,2019,39(2):181-186. doi: 10.15918/j.tbit 1001-0645.2019.02.012 CHU Shao-wei ZHU Ke-ying. Designing for tactile Braille reading methods on smartphones[J]. Transactions of Beijing Institute of Technology, 2019, 39(2):181-186. [5] 褚少微. 振动触觉的量化感知与触觉文字编码设计[J]. 计算机辅助设计与图形学学报,2019,31(6):1046-1052. doi: 10.3724/SP.J.1089.2019.17291 CHUShao-wei. Understanding the perception of vibrations and designing tactile reading onsmartphones[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(6): 1046-1052. [6] JAYANTC, ACUARIOC, JOHNSONW, et al. V-braille: haptic braille perception using a touch-screen and vibration on mobile phones[C]// Proceedings of the ASSETS. Orlando, FL, Oct. 25-27, 2010. doi:10.1145/1878803.1878878 [7] RANTALAJ, RAISAMOR, LYLYKANGASJ, et al. Methods for presenting Braille characters on a mobile device with a touchscreen and tactile feedback [J]. IEEE Transactions on Haptics, 2009, 2(1): 28-39. doi: 10.1109/TOH.2009.3 [8] OLIVEIRAJ, GUERREIROT, NICOLAUH, et al. BrailleType: unleashing Braille over touch screen mobile phones[C]//Proceedings of the IFIP Conference on Human-computer Interaction. Berlin: Springer-Verlag, 2011: 100-107. doi:10.1007/978-3-642-23774-4_10 [9] SOUTHERNC, CLAWSONJ, FREYB, et al. An evaluation of BrailleTouch: mobile touchscreen text entry for the visually impaired[C]//Proceedings of the 14th International Conference on Human-computer Interaction with Mobile Devices and Services. San Francisco, Sep. 21-24, 2012. doi:10.1145/2371574.2371623 [10] WATANABET, FUKUIS. A method for controlling tactile sensation of surface roughness using ultrasonic vibration[C]//Proceedings of the 1995 IEEE International Conference on Robotics and Automation. Nagoya, May 21-27,1995. [11] DAIX, COLGATEJ E, PESHKINM A. LateralPaD: a surface-haptic device that produces lateral forces on a bare finger[C]// Proceedings of the 2012 IEEE Haptics Symposiumn (HAPTICS). Vancouver, Mar. 4-7,2012.doi:10.1109/HAPTIC.2012.6183753 [12] MULLENBACHJ, SHULTZC, COLGATEJ E, et al. Exploring affective communication through variable-friction surface haptics[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Toronto, Apr. 26-May 1, 2014. doi:10.1145/2556288.2557343 [13] MULLENBACHJ, SHULTZC, PIPERA M, et al. Surface haptic interactions with a TPad tablet[C]// Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software and Technology. Scotland, United Kingdom, Oct. 8-11, 2013. [14] WINFIELDL, GLASSMIREJ, COLGATEJ E, et al. T-pad: tactile pattern display through variable friction reduction[C]//Proceedings of the Second Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07).Tsukaba,Mar.22-24,2007.doi:10.1109/WHC.2007.105 [15] MULLENBACHJ, SHULTZC, PIPERA M, et al. Tpad fire: surface haptic tablet[C]//Conference of HAID Haptic and Audio Interaction Design, Daejeon, Apr. 4-5, 2013. [16] CHUS W, ZHANGF, JIN, et al. Experimental evaluation of tactile patterns over frictional surface on mobile phones[C]// Fifth International Symposium of Chinese CHI, Guangzhou, Jun.8-9,2017. doi:10.1145/3080631.3080639 [17] ZHANGF, CHUS W, JIN, et al. Design and evaluation of tactile number reading methods on smartphones[C]// Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). Singapore, Jun.6-8,2018.doi:10.1109/ICIS.2018.8466412 [18] ZHANGF, CHUS W, JIN, et al. Defining a model for development of tactile interfaces on smartphones [C]//Proceedings of the International Conference on Human-Computer Interaction. Las Vegas, Jun. 15-20, 2018. doi:10.1007/978-3-319-91244-8_50 [19] JOSHIA, KALES, CHANDELS, et al. Likert scale: explored and explained[J]. British Journal of Applied Science & Technology, 2015, 7(4): 396-403. doi:10.9734/BJAST/2015/14975