Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (5): 595-606    DOI: 10.3785/j.issn.1006-754X.2022.00.071
Modeling, Simulation, Analysis and Decision     
Study on matching characteristics of centrifugal vapor compressor and evaporator in MVR system
Dong ZHOU1,2(),Xin WEN1,3,Jing WANG2,3,Tao XIONG1,Dong-ting SUN1,Guang-ju DAN1,Yang LIU2
1.Chongqing Jiangjin Shipbuilding Heavy Industry Co. , Ltd. , Chongqing 402263, China
2.National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering, Shanghai 201108, China
3.Key Laboratory of Marine Turbocharger Research and Development, Chongqing Industry and Information Technology, Chongqing 402263, China
Download: HTML     PDF(7561KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to ensure the operation economy and stability of mechanical vapor recompression (MVR) system, the matching characteristics of centrifugal vapor compressor and evaporator in the MVR system were studied. In view of the change of heat transfer coefficient of evaporator under new operation, operation and scaling conditions, the concept of temperature resistance characteristic curve of evaporator operation was put forward, and it was superposed with the temperature rise characteristic curve of centrifugal vapor compressor, so as to carry out matching analysis of centrifugal vapor compressor and evaporator. Through analysis, it was found that the design flow of centrifugal vapor compressor was too large or the heat transfer area of evaporator was too small, which would lead to insufficient matching and easy surge, thus affecting the operation stability of MVR system. However, the design flow of centrifugal vapor compressor was too small or the heat transfer area of evaporator was too large, which led to excessive matching, resulting in poor operating economy of the MVR system, and may even cause the MVR system to be unable to establish thermal self cycle. The results showed that the centrifugal vapor compressor had unstable surge during the startup of MVR system, and the unstable area could be avoided by temporary adjustment of system parameters or by taking auxiliary measures. The surge margin of centrifugal vapor compressor should be more than 20% and the design margin of heat transfer area of evaporator should be 30% during design; the deviation between actual evaporation temperature and design temperature during MVR system operation should be controlled within ±5 ℃. The research results can provide reference for the design and debugging of MVR system.



Key wordsmechanical vapor recompression      centrifugal vapor compressor      evaporator      matching      surge     
Received: 20 January 2022      Published: 02 November 2022
CLC:  TH 452  
Cite this article:

Dong ZHOU,Xin WEN,Jing WANG,Tao XIONG,Dong-ting SUN,Guang-ju DAN,Yang LIU. Study on matching characteristics of centrifugal vapor compressor and evaporator in MVR system. Chin J Eng Design, 2022, 29(5): 595-606.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.071     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I5/595


MVR系统中离心式蒸汽压缩机与蒸发器的匹配特性研究

为了保证机械式蒸汽再压缩(mechanical vapor recompression, MVR)系统的运行经济性和稳定性,对MVR系统中离心式蒸汽压缩机与蒸发器的匹配特性进行研究。针对蒸发器换热系数在新投、工作和结垢工况下的变化,提出了蒸发器运行温阻特性线的概念,并将其与离心式蒸汽压缩机的温升特性线叠加,从而开展离心式蒸汽压缩机与蒸发器的匹配分析。通过分析发现,离心式蒸汽压缩机的设计流量偏大或蒸发器的换热面积过小会导致匹配不足,易发生喘振,从而影响MVR系统的运行稳定性。而离心式蒸汽压缩机的设计流量偏小或蒸发器的换热面积过大会导致匹配过度,致使MVR系统的运行经济性差,甚至可能造成MVR系统无法建立热力自循环。结果表明,离心式蒸汽压缩机在MVR系统启动过程中会出现不稳定的喘振现象,可以通过系统参数的临时调节或采取辅助措施来避开不稳定区。设计时应保证离心式蒸汽压缩机的喘振裕度大于20%,蒸发器换热面积的设计裕度为30%;MVR系统运行时实际蒸发温度与设计温度的偏差应控制在±5 ℃以内。研究结果可为MVR系统的设计和调试提供参考。


关键词: 机械式蒸汽再压缩,  离心式蒸汽压缩机,  蒸发器,  匹配,  喘振 
Fig.1 Schematic of main equipment composition of MVR system
Fig.2 Schematic of thermal process of MVR system
设计参数数值
原液质量流量/(kg/h)3 200
二次蒸汽质量流量/(kg/h)3 000
加热蒸汽消耗量/(kg/h)3 050
蒸发温度/oC80
蒸汽压缩机饱和温升/oC12
Table 1 Main design parameters of MVR system
设计参数数值
质量流量/(kg/h)3 000
饱和温升/°C12
转速/(r/min)17 107
叶轮直径/mm360
叶轮进口叶高/mm68.2
叶轮出口叶高/mm24.2
叶片数16
等熵效率/%84
气动功率/kW80
Table 2 Main design parameters of centrifugal vapor compressor
Fig.3 Schematic of material balance and heat balance of evaporator
设计参数数值
热负荷/kW1 938
换热面积/m2177
传热温差/℃10.52
壳体内径/mm1 200
壳体外径/mm1 220
传热系数/(W/(m2·℃))1 626(新投),952(结垢)
壳程污垢系数/(m2·℃/W)0.000 11
管程污垢系数/(m2·℃/W)0.000 3
换热管材质304不锈钢
换热管长度/mm3 000
换热管外径/mm32
换热管壁厚/mm1.5
换热管数量610
换热管束布置形式等边三角形
换热管管距/mm40
Table 3 Main design parameters of evaporator
Fig.4 Temperature rise characteristic curves of centrifugal vapor compressor
Fig.5 Characteristic curves of evaporator
Fig.6 Characteristic matching of centrifugal vapor compressor and evaporator at speed of Nc2
Fig.7 Characteristic matching of centrifugal vapor compressor and evaporator in MVR system (Te=80 °C,S=177 m2)
Fig.8 Matching operation range of centrifugal vapor compressor in MVR system (Te=80 °C,S=177 m2)
Fig.9 Matching operation range of evaporator in MVR system (Te=80 °C,S=177 m2)
Fig.10 Operation site of MVR system
时间运行点频率/Hz

转速/

(r/min)

饱和温升ΔTc/°C等熵效率/%
新投入Acdc430.86Ne983
7年后Acdx440.88Ne9.583
设计点Acd480.96Ne1284
Table 4 Operating parameters of centrifugal vapor compressor with rated evaporation capacity
Fig.11 Change of operating point of centrifugal vapor compressor (Te=80 °C,S=177 m2)
匹配状态蒸发器换热面积S/m2变化比例
匹配不足1200.68
正常匹配1771.00
过度匹配2351.33
2891.63
Table 5 Heat transfer area of evaporator under different matching conditions
Fig.12 Matching of centrifugal vapor compressor and evaporator with heat transfer area of 120 m2 (Te=80 °C)
Fig.13 Matching of centrifugal vapor compressor and evaporator with heat transfer area of 289 m2 (Te=80 °C)
Fig.14 Matching of centrifugal vapor compressor and evaporator with heat transfer area of 235 m2 (Te=80 °C)
Fig.15 Matching of centrifugal vapor compressor and evaporator with actual evaporation temperature of 90 °C(S=177 m2)
Fig.16 Matching of centrifugal vapor compressor and evaporator with actual evaporation temperature of 70 °C (S=177 m2)

换热面积

S/m2

蒸发器质量M/kg压缩机气动功率Pc/kWΔPcM
1363 63080
1774 873600.016
2356 333520.010
Table 6 Comparison of evaporator quality and pneumatic power of centrifugal vapor compressor under different heat transfer areas
Fig.17 Characteristic line of temperature rise‒pneumatic power of centrifugal vapor compressor
[1]   李伟,朱曼利,洪厚胜.机械蒸汽再压缩技术(MVR)研究现状[J].现代化工,2016,36(11):28-31.
LI Wei, ZHU Man-li, HONG Hou-sheng. Research status of mechanical vapor recompression technology (MVR)[J]. Modern Chemical Industry, 2016, 36(11): 28-31.
[2]   赵远扬,刘广彬,李连生,等.机械蒸汽再压缩系统的性能分析[J].流体机械,2017,45(6):16-20. doi:10.3969/j.issn.1005-0329.2017.06.004
ZHAO Yuan-yang, LIU Guang-bin, LI Lian-sheng, et al. Performance analysis on mechanical vapor recompression system[J]. Fluid Machinery, 2017, 45(6): 16-20.
doi: 10.3969/j.issn.1005-0329.2017.06.004
[3]   高丽丽,张琳,杜明照.MVR蒸发与多效蒸发技术的能效对比分析研究[J].现代化工,2012,32(10):84-86. doi:10.3969/j.issn.0253-4320.2012.10.022
GAO Li-li, ZHANG Lin, DU Ming-zhao. Energy efficiency comparative analysis on MVR and multi-effect evaporation technology[J]. Modern Chemical Industry, 2012, 32(10): 84-86.
doi: 10.3969/j.issn.0253-4320.2012.10.022
[4]   HU Bin, WU Di, WANG Ru-zhu. Water vapor compression and its various applications[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 92-107.
[5]   陆凯杰,张琳,黄军洪,等.MVR蒸汽离心风机的数值模拟与结构优化[J].化学工程,2014,42(10):69-73. doi:10.3969/j.issn.1005-9954.2014.10.015
LU Kai-jie, ZHANG Lin, HUANG Jun-hong, et al. Numerical simulation and structure optimization of MVR steam centrifugal fan[J]. Chemical Engineering(China), 2014, 42(10): 69-73.
doi: 10.3969/j.issn.1005-9954.2014.10.015
[6]   KANG S H, RYU C K, HAN S K. Analysis of performance for centrifugal steam compressor[J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5521-5527.
[7]   LAL P. Numerical investigation and performance analysis on centrifugal steam compressor for mechanical vapor recompression (MVR) applications[D]. Shanghai: Shanghai Jiaotong University, 2017: 77-120.
[8]   YIN Hao-yu, WU Hong, LI Yu-long, et al. Performance analysis of the water-injected centrifugal vapor compressor[J]. Energy, 2020, 200: 117538.
[9]   LABIB N M, KIM S S, CHOI D, et al. Numerical investigation of the effect of inlet skew angle on the performance of mechanical vapor compressor[J]. Desalination, 2012, 284: 66-76.
[10]   ALEXANDER K, DONOHUE B, FEESE T, et al. Failure analysis of an MVR (mechanical vapor recompressor) impeller[J]. Engineering Failure Analysis, 2010, 17(6): 1345-1358.
[11]   KIM T G, LEE H C. Failure analysis of MVR (machinery vapor recompressor) impeller blade[J]. Engineering Failure Analysis, 2003, 10(3): 307-315.
[12]   张建军,李帅旗,陈永珍,等.蒸汽再压缩技术研究现状与发展趋势[J].新能源进展,2020,8(3):207-215. doi:10.3969/j.issn.2095-560X.2020.03.007
ZHANG Jian-jun, LI Shuai-qi, CHEN Yong-zhen, et al. Overview and development tendency of steam recompression[J]. Advances in New and Renewable Energy, 2020, 8(3): 207-215.
doi: 10.3969/j.issn.2095-560X.2020.03.007
[13]   ZHOU Ya-su, SHI Cheng-jun, DONG Guo-qiang. Analysis of mechanical vapor recompression wastewater distillation system[J]. Desalination, 2014, 353: 91-97.
[14]   BATURIN O V, BIYUK V V, ZVYAGINTSEV V A, et al. Investigation of possibility to use industrial high pressure fan as steam compressor for distillation desalination plant[J]. Journal of Physics Conference Series, 2018, 1111(1): 012030.
[15]   JAPIKSE D, BAINES C N. Introductions to turbomachinery[M]. Norwich, Vermont: Concepts ETI, Inc., 1994: 1-3.
[16]   潘学行,薛叙明.传热、蒸发与冷冻操作实训[M].北京:化学工业出版社,2006:76-88.
PAN Xue-xing, XUE Xu-ming. Heat transfer, evaporation and refrigeration manipulation training[M]. Beijing: Chemical Industry Press, 2006: 76-88.
[17]   余建祖,谢永奇,高红霞. 换热器原理与设计[M].北京: 北京航空航天大学出版社,2019:9-10.
YU Jian-zu, XIE Yong-qi, GAO Hong-xia. Heat exchangers theory and design[M]. Beijing: Beihang University Press, 2019: 9-10.
[18]   孙兰义,刘立新,马占华,等.换热器工艺设计[M].北京:中国石化出版社,2020:173-174.
SUN Lan-yi, LIU Li-xin, MA Zhan-hua, et al. Thermal design of heat exchangers[M]. Beijing: China Petrochemical Press, 2020: 173-174.
[19]   Tubular Exchanger Manufacturers Association, INC. Standards of the tubular exchanger manufacturers association[M]. 10th ed. New York: Richard C Byrne, Secretary, 2019: 10-41.
[20]   祁大同.离心式压缩机原理[M].北京:机械工业出版社,2017:142-144.
QI Da-tong. Principle of centrifugal compressor[M]. Beijing: China Machine Press, 2017: 142-144.
[21]   陶文铨.传热学[M].北京:高等教育出版社,2019:303-305.
TAO Wen-quan. Heat transfer[M]. Beijing: Higher Education Press, 2019: 303-305.
[22]   BRENNEN C E. Hydrodynamics of pumps[M]. New York: Cambridge University Press, 2011: 3-5.
[23]   VUKOSAVIC S N. Electrical machines[M]. New York: Springer, 2013: 475-478.
[24]   熊涛.一种压缩机防喘阀的控制方法:CN201810233328.6[P].2018-09-07.
XIONG Tao. A control method of compressor anti-surge valve: CN201810233328.6[P]. 2018-09-07.
[1] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chin J Eng Design, 2023, 30(2): 172-181.
[2] Yi-nan CHEN,Zhi-xin PU,Zhen-ni ZHENG. A novel vascular interventional surgery robot with force detection mechanism[J]. Chin J Eng Design, 2023, 30(1): 20-31.
[3] Meng LI,Zong-jun YIN. Research on comprehensive quality assessment method for parts[J]. Chin J Eng Design, 2022, 29(4): 410-418.
[4] ZHANG Shi-miao, SHAO Hong-yu, CHEN Chen, CHEN Yong-liang. Service matching method for surplus sheet material resource in cloud manufacturing environment[J]. Chin J Eng Design, 2021, 28(2): 121-131.
[5] WANG Wei, ZHANG Kai-yan, LIU Ya-chuan, HUANG Yu-chun. Research on two-step alignment method for 3-D point cloud and its application[J]. Chin J Eng Design, 2020, 27(5): 560-567.
[6] WANG Chun-xiang, WANG Yao, HAO Zhi-bo. Segmentation adaptive slicing algorithm based on features of parts in additive manufacturing[J]. Chin J Eng Design, 2020, 27(3): 373-379.
[7] ZHAO Ze-yu, Lü Jian, PAN Wei-jie, HOU Yu-kang, FU Qian-wen. Research on VR spatial cognition based on virtual reproduction behavior[J]. Chin J Eng Design, 2020, 27(3): 340-348.
[8] LU Wan-jie, FU Hua, ZHAO Hong-rui. Equipment recognition of mining patrol robot based on deep learning algorithm[J]. Chin J Eng Design, 2019, 26(5): 527-533.
[9] HE Gai-yun, PANG Kai-rui, SANG Yi-cun, LIU Chen-hui, WANG Hong-liang. Application of surface matching method in tool path optimization[J]. Chin J Eng Design, 2019, 26(2): 190-196.
[10] LI Yong-le, NAN Jing-chang, YOU Chang-jiang, DU Xue-kun, JIANG Di. Design of highly efficient broadband Class-E power amplifier based on improved matching network[J]. Chin J Eng Design, 2015, 22(2): 178-184.
[11] XIA Lei, JIANG Hao-bin. Design improvement of vehicle bumper anti-collision beam based on stiffness matching[J]. Chin J Eng Design, 2015, 22(1): 84-88.
[12] ZHU Ai-Bin, WANG Bu-Kang, TIAN Chao, ZHOU Yao, CHEN Wei. Design and implementation of power loss analysis system for travel mechanism of tracked vehicle[J]. Chin J Eng Design, 2011, 18(6): 444-448.
[13] DENG Yin-Hu, HU Yu-Jin, YANG Ying-Chao. Matching of rigidity and equip-intensity design of twin torsion bar in double wishbone suspension with twin torsion bar[J]. Chin J Eng Design, 2002, 9(1): 44-48.