|
|
Modeling and solving of transverse flexure coupled vibration for multi annular plate |
FU Jun-fan1, QIN Hui-bin1,2, LÜ Ming2 |
1. School of Mechanical and Power Engineering, North University of China, Taiyuan 030051, China;
2. Shanxi Key Laboratory of Precision Machining, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract Ultrasonic resonant system is the core equipment of rotary ultrasonic machining (RUM), and multi annular plate structure is a typical load structure of ultrasonic resonant system. The analysis of transverse flexure coupled vibration for this structure is of great significance for ultrasonic resonant system design. Based on Mindlin theory for thick plate, transverse flexure vibration analysis model of multi annular plate was established by the use of deflection, rotation angle, shear force, and bending moment of continuity and boundary conditions for annular plates. Frequency equation was derived, and calculating software for transverse flexure coupled vibration frequency of multi annular plate was designed by MATLAB. By the comparison among theoretical model, finite element model analysis and model experiment, the accuracy of the solving model and practicability of the calculating software were verified, which provided technical reference for RUM system design.
|
Received: 17 October 2016
Published: 28 June 2017
|
|
多环盘组合结构的横向弯曲耦合振动建模与求解
超声谐振系统是旋转超声加工的核心设备,而多环盘结构是超声谐振系统中一种典型的负载结构,其横向弯曲耦合振动分析对于超声谐振系统设计具有重要意义。基于Mindlin厚板动力学理论,利用环盘的位移、转角、剪力和弯矩的连续条件和边界条件,建立了多环盘组合结构的横向弯曲耦合振动分析模型,推导了频率求解方程,并基于MATLAB设计了多环盘横向弯曲耦合振动频率的计算软件。通过理论模型求解、有限元模态分析和齿轮模态实验之间的对比分析,验证了该求解模型的准确性和程序的实用性,为旋转超声加工系统的设计提供了技术参考。
关键词:
多环盘,
Mindlin理论,
横向弯曲耦合振动,
谐振频率
|
|
[[1]] |
秦慧斌, 吕明, 王时英, 等.齿轮超声加工纵向振动系统的设计与实验研究[J].工程设计学报, 2013, 20(2): 140-145. QIN Hui-bin, LV Ming, WANG Shi-ying, et al. Design and experiment research of longitudinal vibration system in gear ultrasonic machining[J]. Chinese Journal of Engineering Design, 2013, 20(2): 140-145.
|
|
|
[[2]] |
WANG Y, LIN B, CAO X, et al. An experimental investigation of system matching in ultrasonic vibration assisted grinding for titanium[J]. Journal of Materials Processing Technology, 2014, 214(9): 1871-1878.
|
|
|
[[3]] |
NING F D, CONG W L, PEI Z J, et al. Rotary ultrasonic machining of CFRP: a comparison with grinding[J]. Ultrasonics, 2016, 66: 125-132.
|
|
|
[[4]] |
JATINDER K.Ultrasonic machining-a comprehensive review[J]. Machining Science & Technology, 2013, 17(3): 325-379.
|
|
|
[[5]] |
GALLEGO-JUAREZ J A, RODRIGUEZ G, ACOSTA V, et al. Power ultrasonic transducers with extensive radiators for industrial processing[J]. Ultrasonics Sonochemistry, 2010, 17(6): 953-964.
|
|
|
[[6]] |
GALLEGO-JUAREZ J A, RORiGUEZ G, ACOSTA-APARICIO V M, et al. Power ultrasonics: applications of high-Intensity ultrasound [M]. Oxford: Woodhead Publishing, 2014: 159-193.
|
|
|
[[7]] |
GALLEGO-JUAREZ J A. High-power ultrasonic processing: recent developments and prospective advances[J]. Physics Procedia, 2010, 3(1): 35-47.
|
|
|
[[8]] |
张小丽.纵弯及纵径振动模式转换功率超声换能器的研究[D].西安: 陕西师范大学物理学与信息技术学院, 2014: 67-103. ZHANG Xiao-li. Analysis of power ultrasonic transducers for longitudinal-flexural and longitudinal-radial mode-conversion vibration[D]. Xi'an: Shaanxi Normal University, School of Physics and Information Technology, 2014: 67-103.
|
|
|
[[9]] |
李华, 任坤, 殷振, 等.纵弯转换超声振动雾化系统的雾化特性研究[J].中国机械工程, 2015, 26(4): 446-451. LI Hua, REN Kun, YIN Zhen, et al. Study on atomization property of an ultrasonic vibration atomization system based on longitudinal and flexural vibration conversion[J]. China Mechanical Engineering, 2015, 26(4): 446-451.
|
|
|
[[10]] |
HE X P, ZHU T, PAN X J. Analytical and experimental investigation on thick plates in flexural vibration[J]. Acta Acustica United with Acustica, 2014, 100(3): 411-417.
|
|
|
[[11]] |
潘晓娟, 贺西平.厚圆盘弯曲振动研究[J].物理学报, 2010, 59(11): 7911-7916. PAN Xiao-juan, HE Xi-ping. Analysis of flexural vibration thick disk [J]. Acta Physica Sinica, 2010, 59(11): 7911-7916.
|
|
|
[[12]] |
李向鹏, 张春辉, 王时英.基于Mindlin理论的齿轮横向振动模型[J].振动与冲击, 2011, 30(12): 230-234. LI Xiang-peng, ZHANG Chun-hui, WANG Shi-ying. Models of transverse vibration of gear based on Mindlin's theory [J]. Journal of Vibration and Shock, 2011, 30(12): 230-234.
|
|
|
[[13]] |
佘银柱, 吕明, 王时英.阶梯变厚度齿轮的横向弯曲振动[J].机械科学与技术, 2013, 32(1): 116-119. SHE Yin-zhu, LÜ Ming, WANG Shi-ying. Transverse bending vibration of gear with stepped variable thickness[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(1): 116-119.
|
|
|
[[14]] |
QIN H B, LÜ M, SHE Y Z, et al. Modeling and solving for transverse vibration of gear with variational thickness[J]. Journal of Central South University, 2013, 20(8): 2124-2133.
|
|
|
[[15]] |
吕明, 王时英, 秦慧斌.非谐振设计理论与齿轮超声加工[M].北京: 科学出版社, 2014: 36-70. LÜ Ming, WANG Shi-ying, QIN Hui-bin. Nonresonant design theory and ultrasonic gear machining[M]. Beijing: Science Press, 2014: 36-70.
|
|
|
[[16]] |
HOSSEINI-HASHEMI S, DERAKHSHANI M, FADAEE M. An accurate mathematical study on the free vibration of stepped thickness circular/annular Mindlin functionally graded plates[J]. Applied Mathematical Modelling, 2013, 37(6): 4147-4164.
|
|
|
[[17]] |
HOSSEINI-HASGEMI S, BEDROUD M, NAZEMNEZHAD R.An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity[J]. Composite Structures, 2013, 103(9): 108-118.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|