Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (6): 558-563,611    DOI: 10.3785/j.issn.1006-754X.2016.06.006
    
Jet trajectory model and positioning compensation method for fire water cannon
CHEN Xue-jun1,2, YANG Yong-ming2
1. Department of Mechanical & Electrical Engineering, Putian University, Putian 351100, China;
2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
Download: HTML     PDF(913KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The traditional spraying water and gas fire extinguishing system can not meet the growing fire-fighting requirements of large space buildings, and then intelligent fire water cannons have gradually become the new fire-fighting equipment for large space and industrial applications. For the jet fire of current intelligent fire water cannons had a big error, jet trajectory models for fire water cannons were built in consideration of air resistance. The characteristics of jet trajectory were analyzed based on the model, then initial elevation angle was solved with considering the positioning rotation angle. The initial parameters and mutual restraint between them for the proposed jet trajectory model were verified and improved through simulation experiments. In the actual test environment, the initial elevation angle calculated by the proposed model was corrected and section ally compensated. Experimental results showed that intelligent fire water cannons based on the proposed jet trajectory models considering air resistance would achieve positioning time of less than 30 s. The deviation between the drowning center point and ignition source was less than 0.3 m, and the range error met the national standard. This method can provide references for the control and research of the intelligent fire water cannons.



Key wordsfire water cannon      jet      trajectory      positioning      compensation     
Received: 04 March 2016      Published: 28 December 2016
CLC:  TP202  
  TP391  
Cite this article:

CHEN Xue-jun, YANG Yong-ming. Jet trajectory model and positioning compensation method for fire water cannon. Chinese Journal of Engineering Design, 2016, 23(6): 558-563,611.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.06.006     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I6/558


消防水炮射流运动轨迹模型与定位补偿方法

传统的喷洒水和气体灭火系统已不能满足大空间建筑场所的灭火要求,智能消防水炮已逐步成为高大空间和工业场合的灭火新设备.针对当前智能消防水炮射流灭火误差较大的问题,在考虑空气阻力的情况下,构建智能消防水炮射流运动轨迹模型,分析射流轨迹特性,求解初始仰射角,进行定位旋转角补偿.通过仿真实验完善和验证射流运动轨迹模型初始参数,以及它们之间相互约束关系;在实际试验环境下,对通过射流运动轨迹模型计算得到的初始仰射角进行分段修正补偿.实验结果表明,基于考虑空气阻力下的智能消防水炮射流运动轨迹模型的定位时间小于30 s,射流落水点和火源中心偏差小于0.3 m,射程误差满足国家标准,可为智能消防水炮的控制和研发提供借鉴.


关键词: 消防水炮,  射流,  轨迹,  定位,  补偿 

[1] 陈志芬,陈晋,黄崇福,等. 大型公共场所火灾风险评价指标体系(I):火灾事故因果分析[J]. 自然灾害学报,2006,15(1):79-85. CHEN Zhi-fen, CHEN Jin, HUANG Chong-fu, et al. Fire risk assessment index system for large-scale public places (I):causality analysis for fire accident[J]. Journal of Natural Disasters, 2006, 15(1):79-85.
[2] 孙颖,陈劭,于文华,等. 森林消防泵性能测试系统的设计与实现[J]. 工程设计学报,2012,19(2):128-132,160. SUN Ying, CHEN Shao, YU Wen-hua, et al. The design and realization of test system on performance of forest fire pump[J]. Chinese Journal of Engineering Design, 2012,19(2):128-132,160.
[3] 侯杰,钱稼茹,赵作周,等. 高大空间建筑火灾探测及扑救技术发展思考[J]. 华中科技大学学报(城市科学版),2008,25(4):196-202. HOU Jie, QIAN Jia-ru, ZHAO Zuo-zhou, et al. Research on fire detection and putting out technology for high and large-span space buildings[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2008, 25(4):196-202.
[4] B Uur T, YIITHAN D, UUR G, et al. Computer vision based method for real-time fire and flame detection[J]. Pattern Recognition Letters, 2006, 27(1):49-58.
[5] MARBACH G, LOEPFE M, BRUPBACHER T. An image processing technique for fire detection in video images[J]. Fire Safety Journal, 2006, 41(4):285-289.
[6] 刘申友,袁宏永,苏国锋,等. 定点灭火智能消防水炮[J]. 中国安全科学学报, 2001, 2(11):37-41. LIU Shen-you, YUAN Hong-yong, SU Guo-feng, et al. Automatic orientating fire extinguishing monitor[J]. China Safety Science Journal, 2001, 2(11):37-41.
[7] 舒雅,姚斌,黄斌,等. 大空间仓库堆垛特性对水炮雾状射流灭火性能影响的实验研究[J]. 火灾科学,2014, 23(2):63-74. SHU Ya, YAO Bin, HUANG Bin, et al. Influence of stacking in a huge warehouse on the fire control performance of vaporific spray from a water cannon[J]. Fire Safety Science, 2014, 23(2):63-74.
[8] HATTON A P, LEECH C M, OSBORNE M J. Computer simulation of the trajectories of large water jets[J]. International Journal of Heat and Fluid Flow, 1985, 6(2):137-141.
[9] LEVENDIS Y A, DELICHATSIOS M A. Pool fire extinction by remotely controlled application of liquid nitrogen[J]. Process Safety Progress, 2011, 30(2):164-167.
[10] 万峰,陈晓阳,闵永林,等. 基于相似理论的消防炮射流轨迹模拟实验的设计[J]. 上海大学学报(自然科学版), 2008,14(6):629-632. WAN Feng, CHEN Xiao-yang, MIN Yong-lin, et al. Design of simulation experiment for jet track of fire monitor based on similarity theory[J]. Journal of Shanghai University (Natural Science Edition), 2008, 14(6):629-632.
[11] 姚斌,宋群立,刘炳海,等. 自动消防水炮的喷水强度分布特性及其控火性能研究[J]. 火灾科学,2007,16(4):220-225. YAO Bin, SONG Qun-li, LIU Bing-hai, et al. Water density distribution and fire control capability of auto-regulative water gun[J]. Fire Safety Science, 2007, 16(4):220-225.
[12] HU G L, LONG M, CHEN W G. Structure design and analysis of water jet performances of a new type of fixed fire water monitor[J]. Hydromechatronics Engineering, 2013, 41(12):15-22, 61.
[13] 闵永林,陈晓阳,陈池,等. 考虑俯仰角的消防水炮射流轨迹理论模型[J]. 机械工程学报,2011, 47(11):134-138. MIN Yong-lin, CHEN Xiao-yang, CHEN Chi, et al. Pitching angle-based theoretical model for the track simulation of water jet out from water fire monitors[J]. Journal of Mechanical Engineering, 2011, 47(11):134-138.
[14] CHEN T, YUAN H Y, SU G F, et al. An automatic fire searching and suppression system for large spaces[J]. Fire Safety Journal, 2004, 39(4):297-307.
[15] 耿丽萍,周静伟,陶容. 基于柯恩达效应的自激旋进射流流动特性研究[J]. 中国机械工程,2009,20(10):1217-1221. GENG Li-ping, ZHOU Jing-wei, TAO Rong. Flow characteristics of self-excited processing jet based on the coanda effect[J]. China Mechanical Engineering, 2009, 20(10):1217-1221.
[16] 陈凯,卫凤,张前程,等. 基于飞行力学的惯导轨迹发生器及其在半实物仿真中的应用[J]. 中国惯性技术学报,2014,22(4):486-491. CHEN Kai, WEI Feng, ZHANG Qian-cheng, et al. Trajectory generator of strapdown inertial navigation system on flight dynamics with application in hardware-in-the-loop simulation[J]. Journal of Chinese Inertial Technology, 2014, 22(4):486-491.
[17] 姜泽辉,韩红,李翛然,等. 空气阻力对完全非弹性蹦球动力学行为的影响[J]. 物理学报,2012,61(24):240502-1-8. JIANG Ze-hui, HAN Hong, LI Xiao-ran, et al. Effect of air damping on dynamical behaviors of a completely inelastic bouncing ball[J]. Acta Physica Sinica, 2012, 61(24):(240502-1)-(240502-8).
[18] 戎军,万明,金韡,等. 自动跟踪定位射流灭火系统:GB25204-2010[S]. 北京:中国标准出版社, 2010:2-6. RONG Jun, WAN Ming, JIN Wei, et al. Auto tracking and targeting jet suppression system:GB25204-2010[S]. Beijing:China Standard Press, 2010:2-6.

[1] Pei-cheng SHI,Xu CHEN,Ai-xi YANG,Liang ZHANG. Ackerman steering trajectory planning and position estimation of 4WID-4WIS intelligent vehicle[J]. Chinese Journal of Engineering Design, 2022, 29(2): 123-132.
[2] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[3] Wei-guang TIAN,Hai-li XU,Yan CHEN,Yi-xian ZHU,Xi LIU. Variable lane isolation guardrail carrier robot system and its control strategy[J]. Chinese Journal of Engineering Design, 2022, 29(2): 237-246.
[4] WANG Yong-feng, ZHAO Guo-ru, KONG Xiang-zhan, ZHENG Kai, LI Guang-lin. Design and analysis of unpowered lower-limb exoskeleton with muscle strength synergistic compensation[J]. Chinese Journal of Engineering Design, 2021, 28(6): 764-775.
[5] ZHAO Kai-ping, HE Tao, WANG Chuan-li, SHI Rui. Research on amplitude compensation performance of double spring electro-hydraulic vibration cylinder[J]. Chinese Journal of Engineering Design, 2021, 28(6): 737-745.
[6] WANG Zhi-liang, CHEN Kun, ZHANG Zhen, ZHOU Wang-ming, HUANG He-xiang, XIA Cheng-yu. Study on cuttings carrying principle and numerical simulation analysis of new drill pipe[J]. Chinese Journal of Engineering Design, 2021, 28(5): 602-614.
[7] SHANG Zhi-wu, ZHOU Shi-qi. Research on micropipetting technology based on image monitoring[J]. Chinese Journal of Engineering Design, 2021, 28(4): 495-503.
[8] LIU Xiao-yu, TIAN Ying, ZHANG Ming-lu. Review of underwater manipulator dynamics research[J]. Chinese Journal of Engineering Design, 2021, 28(4): 389-398.
[9] YAN Ying, ZHANG Xiao-ping, JIANG Hai-peng, ZHANG Zhu, ZHAO Yan-ming, HUANG Liang-pei. Active heave compensation control method of marine winch driven by switched reluctance motor based on GSSEC[J]. Chinese Journal of Engineering Design, 2021, 28(2): 132-140.
[10] SUN Ning-song, SHI Yong-jin. Design of sand throwing backfill device for submarine suspended pipeline and cable and its directional filling precision analysis[J]. Chinese Journal of Engineering Design, 2020, 27(5): 654-661.
[11] LI Xuan, ZHOU Shuang-wu, LU Song, DING Bing-xiao. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism[J]. Chinese Journal of Engineering Design, 2020, 27(4): 533-540.
[12] WANG Chuan, FANG Hai-hui, NA Feng, JIN Hao, WANG An-yi, LIU Jing. Research on vertical release and installation of drill string-production tree based on heave compensation[J]. Chinese Journal of Engineering Design, 2020, 27(4): 478-486.
[13] TAN Xu, WANG Xiao-yang, YIN Shen, ZENG Ting, WEI Xing-ya. Equal-area smoothing compensation control method for high-precision ultra-high pressure liquid pump[J]. Chinese Journal of Engineering Design, 2020, 27(2): 146-153.
[14] MA Chang-li, LIU Cong, MA Ben. Research on wave heave simulation and adaptive compensation strategy based on disturbance observer[J]. Chinese Journal of Engineering Design, 2019, 26(6): 728-735.
[15] HE Gai-yun, ZHANG Xiao-lei, ZHANG Da-wei, SUN Guang-ming. Research on three-dimensional evaluation method for repeated positioning accuracy of machine tool linear axis[J]. Chinese Journal of Engineering Design, 2019, 26(4): 371-378.