Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (3): 393-402    DOI: 10.3785/j.issn.1006-754X.2025.05.120
优化设计     
精密磨床液体静压导轨承载特性分析与参数优化
张坤1(),郭宏亮1,石有圣2,李洪凯1,赵栋杰1()
1.聊城大学 机械与汽车工程学院,山东 聊城 252000
2.聊城市科技信息研究中心,山东 聊城 252000
Analysis of load-bearing characteristics and parameter optimization of hydrostatic guideway in precision grinding machine
Kun ZHANG1(),Hongliang GUO1,Yousheng SHI2,Hongkai LI1,Dongjie ZHAO1()
1.School of Mechanical & Automotive Engineering, Liaocheng University, Liaocheng 252000, China
2.Liaocheng Science & Technology Information Research Center, Liaocheng 252000, China
 全文: PDF(4046 KB)   HTML
摘要:

承载力和刚度是衡量液体静压导轨承载特性的关键性能指标,直接影响精密磨床的加工精度与稳定性。针对液体静压导轨对置油垫结构参数的交互作用机制不明确、现有研究多局限于单油垫分析的问题,以某型精密磨床的花岗岩液体静压导轨为研究对象,系统地开展了多参数耦合作用下的承载特性分析与参数优化。首先,基于流体力学理论构建了液体静压导轨承载特性的数学模型,并推导出对置油垫承载力与刚度的解析表达式。然后,通过单因素分析揭示了供油压力、油腔间隙、封油边宽度及小孔节流器直径对液体静压导轨承载特性的独立影响规律,发现供油压力和油腔间隙对承载力和刚度有显著影响。最后,采用BBD(Box-Behnken Design)法设计了27组试验,构建了二阶多项式回归模型,以解析多参数的交互作用机制,并基于响应面法开展了多目标优化,获得了设计参数的最优解集。结果表明:优化后液体静压导轨的承载力和刚度分别提升了24.99%和19.62%。研究结果为精密磨床液体静压导轨的承载性能提升和参数优化提供了一定的理论参考。

关键词: 液体静压导轨承载特性交互作用参数优化响应面法    
Abstract:

Load-bearing capacity and stiffness are key performance indicators for measuring the load-bearing characteristics of hydrostatic guideways, directly affecting the machining accuracy and stability of precision grinding machines. In response to the unclear interaction mechanism of the structural parameters of the opposed oil pads in hydrostatic guideways and the limitation of existing studies focusing on single oil pad analysis, taking the granite hydrostatic guideway of a certain type of precision grinding machine as the research object, the load-bearing characteristic analysis and parameter optimization under the coupling effect of multiple parameters were systematically carried out. Firstly, based on the theory of fluid mechanics, a mathematical model of the load-bearing characteristics of the hydrostatic guideway was established, and analytical expressions for the load-bearing capacity and stiffness of the opposed oil pads were derived. Then, through single-factor analysis, the independent influence laws of oil supply pressure, oil cavity clearance, oil seal edge width and orifice throttler diameter on the load-bearing characteristics of the hydrostatic guideway were revealed. It was found that the oil supply pressure and oil cavity clearance had a significant impact on the load-bearing capacity and stiffness. Finally, 27 groups of experiments were designed using the BBD (Box-Behnken Design) method, and a second-order polynomial regression model was constructed to analyze the interaction mechanism of multiple parameters. Meanwhile, the multi-objective optimization was carried out based on the response surface method, and the optimal solution set of the design parameters was obtained. The results showed that the load-bearing capacity and stiffness of the optimized hydrostatic guideway were improved by 24.99% and 19.62%, respectively. The research results provide a theoretical reference for the enhancement of the load-bearing performance and parameter optimization of hydrostatic guideways in precision grinding machines.

Key words: hydrostatic guideway    load-bearing characteristics    interaction    parameter optimization    response surface method
收稿日期: 2025-03-12 出版日期: 2025-07-02
CLC:  TH 137  
基金资助: 山东省重点研发计划项目(2017NC212010);山东省高校科研计划项目(J18KB009)
通讯作者: 赵栋杰     E-mail: 13563837199@163.com;zhaodongjie@lcu.edu.cn
作者简介: 张 坤(1996—),男,硕士生,从事静压导轨设计与分析技术研究,E-mail: 13563837199@163.com,https://orcid.org/0009-0003-2765-4987
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张坤
郭宏亮
石有圣
李洪凯
赵栋杰

引用本文:

张坤,郭宏亮,石有圣,李洪凯,赵栋杰. 精密磨床液体静压导轨承载特性分析与参数优化[J]. 工程设计学报, 2025, 32(3): 393-402.

Kun ZHANG,Hongliang GUO,Yousheng SHI,Hongkai LI,Dongjie ZHAO. Analysis of load-bearing characteristics and parameter optimization of hydrostatic guideway in precision grinding machine[J]. Chinese Journal of Engineering Design, 2025, 32(3): 393-402.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.120        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/393

图1  花岗岩液体静压导轨结构
图2  液体静压导轨流道及其静压支承剖面示意图
参数数值
油垫宽度/mm100
油垫长度/mm180
封油边宽度/mm20
小孔节流器直径/mm0.16
油腔间隙/μm40
初始油膜厚度/μm20
供油压力/MPa1.0
液压油密度/(kg/m3)848.4
液压油动力黏度/(N?s/m2)0.019 259
表1  液体静压导轨设计参数与液压油性能参数
图3  矩形油垫和小孔节流器的结构示意图
图4  液体静压导轨受力示意图
图5  供油压力对液体静压导轨承载特性的影响
图6  油腔间隙对液体静压导轨承载特性的影响
图7  封油边宽度对液体静压导轨承载特性的影响
图8  小孔节流器直径对液体静压导轨承载特性的影响
设计参数取值范围
供油压力/MPa0.7~1.3
油腔间隙/μm40~45
封油边宽度/mm15~19
小孔节流器直径/mm0.15~0.18
表2  液体静压导轨各设计参数的取值范围
序号因素承载力/N

刚度/

(N/μm)

A/MPaB/μmC/mmD/mm
11.343150.167 101.581 113.78
21.043170.166 348.411 232.36
31.045190.166 348.411 232.36
41.043190.157 376.281 272.81
50.743170.154 625.09867.84
61.045170.184 540.32814.65
71.040190.165 278.161 098.28
80.743190.167 587.191 595.22
91.043190.187 972.811 578.69
101.043150.156 348.411 232.36
110.743150.165 700.581 137.06
120.745170.167 110.581 168.43
131.040150.166 665.541 227.99
141.345170.164493.91858.69
151.043170.165 142.181 105.84
161.043170.168 434.931 583.41
171.045150.166 136.571 214.29
181.343170.159 382.991 654.87
190.740170.166 505.821 147.17
201.045170.156 380.011 389.69
211.040170.154 632.51791.76
221.343170.183 917.92793.18
231.040170.187 218.971 272.19
241.043150.186 076.521 255.80
251.343190.164 912.911 069.65
261.340170.165 015.77797.98
270.743170.187 893.391 632.31
表3  液体静压导轨设计参数优化试验方案与结果
来源承载力刚度
FPFP
模型1 404.95<0.000 13 277.88<0.000 1
A1 681.06<0.000 14 1591.77<0.000 1
B2 158.63<0.000 12 096.13<0.000 1
C1.460.250 01 361.20<0.000 1
D4.75<0.000 149.92<0.000 1
AB25.290.000 335.48<0.000 1
AC10.680.006 74.050.067 2
AD61.86<0.000 12.850.117 4
BC2.950.111 80.741 60.406 0
BD1.800.003 05.500.037 1
CD18.160.001 124.370.000 3
A214.110.002 71.700.216 2
B2111.07<0.000 1110.51<0.000 1
C25.770.033 32.450.143 1
D21.690.218 368.98<0.000 1
r20.999 40.999 7
radj20.998 70.999 4
rpre20.996 50.998 5
表4  承载力和刚度响应面模型的方差分析结果
图9  设计参数对液体静压导轨承载特性的交互影响
设计参数承载力刚度
供油压力6.758.4
油腔间隙22.125.3
封油边宽度3.511.6
小孔节流器直径11.74.7
表5  各设计参数对承载力和刚度的贡献率 (%)
设计参数与性能参数优化前优化后
供油压力/MPa1.01.1
油腔间隙/μm4041
封油边宽度/mm2015
小孔节流器直径/mm0.160.18
承载力/N6 140.527 675.36
刚度/(N/μm)1 098.761 314.34
表6  优化前后液体静压导轨的承载特性对比
[1] 高殿荣, 赵建华, 张作超. 液体静压导轨单一导轨面内油腔数目的分析[J]. 工程力学, 2013, 30(4): 423-428, 441.
GAO D R, ZHAO J H, ZHANG Z C. Analysis of number of oil-pockets in one slide surface of liquid hydrostatic slide[J]. Engineering Mechanics, 2013, 30(4): 423-428, 441.
[2] 彭冲. 新型高液阻液体静压导轨的结构优化设计及特性分析[D]. 西安: 西安理工大学, 2014.
PENG C. The structure optimization design and characteristic analysis of the new high liquid resistance of hydrostatic guideway[D]. Xi’an: Xi’an University of Technology, 2014.
[3] 董鹏程. 超精密液体静压导轨静动态特性分析及控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
DONG P C. Analysis of the static and dynamic characteristics of ultra-precision hydrostatic guideway and its control technology research[D]. Harbin: Harbin Institute of Technology, 2013.
[4] 仝志伟, 洪荣晶, 孙付仲. 基于静压导轨平面度误差的转台支承布局重构[J]. 制造技术与机床, 2022(2): 67-72.
TONG Z W, HONG R J, SUN F Z. Reconstruction of turntable support layout based on flatness error of hydrostatic guide[J]. Manufacturing Technology & Machine Tool, 2022(2): 67-72.
[5] 张伟. 定量供油开式液体静压环形导轨油膜厚度研究[J]. 机械工程师, 2011(7): 34-35.
ZHANG W. Study on oil film thickness of open hydrostatic annular guide rail with quantitative oil supply[J]. Mechanical Engineer, 2011(7): 34-35.
[6] 朴银川, 张宣, 张飞虎. 超精密机床液体静压导轨静动态特性研究[J]. 组合机床与自动化加工技术, 2020(10): 1-4, 8.
PIAO Y C, ZHANG X, ZHANG F H. Research on static and dynamic characteristic of hydrostatic slide for ultra-precision machine tools[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(10): 1-4, 8.
[7] SHEN F, CHEN C L, LIU Z M. Effect of pocket geometry on the performance of a circular thrust pad hydrostatic bearing in machine tools[J]. Tribology Transactions, 2014, 57(4): 700-714.
[8] 夏毅敏, 王洋, 胡均平, 等. 节流器结构参数对Nanosys-1000液体静压导轨承载特性的影响[J]. 光学 精密工程, 2015, 23(9): 2586-2594. doi:10.3788/ope.20152309.2586
XIA Y M, WANG Y, HU J P, et al. Influence of restrictor structural parameters on load-bearing characteristics of Nanosys-1000 hydrostatic guideway[J]. Optics and Precision Engineering, 2015, 23(9): 2586-2594.
doi: 10.3788/ope.20152309.2586
[9] 杨添任. Nanosys-1000非球面加工机床液体静压导轨工作特性研究[D]. 长沙: 中南大学, 2013.
YANG T R. Research of working characteristics of hydrostatic guideway of Nanosys-1000 aspherical machining tool[D]. Changsha: Central South University, 2013.
[10] 应晔. 用于液体静压导轨的花岗岩材料结构分析与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
YING Y. Structure analysis and experimental study of granite material applied in hydrostatic guide[D]. Harbin: Harbin Institute of Technology, 2008.
[11] 陈燕生. 液体静压支承原理和设计[M]. 北京: 国防工业出版社, 1980: 33-35.
CHEN Y S. Principle and design of hydrostatic bearing[M]. Beijing: National Defense Industry Press, 1980: 33-35.
[12] 武鹏飞, 高峰, 李艳. 液体静压导轨初始液阻比的最优设计分析[J]. 机床与液压, 2019, 47(7): 76-79.
WU P F, GAO F, LI Y. Optimal design of initial liquid resistance ratio of hydrostatic guide[J]. Machine Tool & Hydraulics, 2019, 47(7): 76-79.
[13] 李晓会. 基于超精密车床闭式静压导轨节流器参数研究[J]. 制造技术与机床, 2023(8): 5-12, 31.
LI X H. Research on parameters of flow regulators based on closed hydrostatic guideway of ultra-precision lathe[J]. Manufacturing Technology & Machine Tool, 2023(8): 5-12, 31.
[14] 李典伦, 黄华, 邓文强. 数控机床液体静压导轨结构的优化设计[J]. 工程设计学报, 2020, 27(4): 448-455.
LI D L, HUANG H, DENG W Q. Optimization design of structure of the hydrostatic guideway of NC machine tool[J]. Chinese Journal of Engineering Design, 2020, 27(4): 448-455.
[15] 乔文通, 邵先月, 钱丽娟, 等. 响应面法优化空气喷嘴雾化流场的数值研究[J]. 机床与液压, 2021, 49(9): 149-157.
QIAO W T, SHAO X Y, QIAN L J, et al. Numerical study on the optimization of atomization flow field in air nozzle using response surface methodology[J]. Machine Tool & Hydraulics, 2021, 49(9): 149-157.
[16] 刘帅呈, 李俊, 资明康, 等. 基于响应面法的微结构抛光工具优化设计[J]. 模具工业, 2025, 51(3): 56-66.
LIU S C, LI J, ZI M K, et al. Optimization design of micro-structure polishing tools based on response surface methodology[J]. Die & Mould Industry, 2025, 51(3): 56-66.
[17] 邱春雷, 尹洋. 基于响应面法的小孔节流静压气体轴承多目标优化[J]. 润滑与密封, 2022, 47(7): 125-130. doi:10.3969/j.issn.0254-0150.2022.07.018
QIU C L, YIN Y. Multi-objective optimization of aerostatic bearing with orifice based on response surface method[J]. Lubrication Engineering, 2022, 47(7): 125-130.
doi: 10.3969/j.issn.0254-0150.2022.07.018
[18] 李泽岩, 齐向阳, 吴承亮, 等. 液体静压轴承静态特性分析及其结构参数优化设计[J/OL]. 机电工程, 2025: 1-10 (2025-03-24) [2025-04-04]. .
LI Z Y, QI X Y, WU C L, et al. Static characteristics analysis and structural parameter optimization design of hydrostatic bearing[J/OL]. Journal of Mechanical & Electrical Engineering, 2025: 1-10 (2025-03-24) [2025-04-04]. .
[19] 黄小凯, 刘守文, 黄首清, 等. 基于响应面方法的轴承多应力加速模型建模与验证技术[J]. 哈尔滨工业大学学报, 2019, 51(7): 128-134.
HUANG X K, LIU S W, HUANG S Q, et al. Modeling and verification technology of bearing multi-stress acceleration model based on response surface method[J]. Journal of Harbin Institute of Technology, 2019, 51(7): 128-134.
[1] 喻曹丰,胡逸凯,段永勇,魏梓贤,王宁. 基于响应面法的高压共轨式超磁致伸缩喷油器响应时间优化[J]. 工程设计学报, 2025, 32(3): 373-382.
[2] 杨培,张明路,孙凌宇. 爬壁机器人磁吸附模块设计分析与结构参数优化[J]. 工程设计学报, 2024, 31(5): 592-602.
[3] 蔡锦云,刘忠,王罡,赵庆斌,安宁,杜旭伟,李东良,李源周. 基于响应面法的绞磨机辅助拉尾绳装置优化设计[J]. 工程设计学报, 2024, 31(2): 178-187.
[4] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[5] 张鹏程,牛建业,刘承磊,宋井科,王立鹏,张建军. 牵引式下肢康复机器人机构参数优化及轨迹规划[J]. 工程设计学报, 2022, 29(6): 695-704.
[6] 张文豪,班传文,李松梅. 基于离散元法的双组份复合涂料搅拌螺杆参数优化[J]. 工程设计学报, 2022, 29(5): 547-554.
[7] 钟道方, 田颖, 张明路. 轮腿式爬壁机器人的永磁吸附装置设计与优化[J]. 工程设计学报, 2022, 29(1): 41-50.
[8] 李典伦, 黄华, 邓文强. 数控机床液体静压导轨结构的优化设计[J]. 工程设计学报, 2020, 27(4): 448-455.
[9] 高启升, 朱兴华, 于延凯, 郑荣. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.
[10] 汤亮, 何仁杰, 龚发云, 李飞扬, 刘冠军, 杨敏. 变风载下风电齿轮箱内部激励规律研究及动态特性优化[J]. 工程设计学报, 2020, 27(2): 212-222.
[11] 刘春青, 王文汉. 基于人工神经网络-遗传算法的展成法球面精密磨削参数优化[J]. 工程设计学报, 2019, 26(4): 395-402.
[12] 魏春雨, 蔡月, 刘明贺, 张琦, 贾乾忠. 新型车载医疗救护隔振平台设计及仿真[J]. 工程设计学报, 2018, 25(5): 532-538.
[13] 陈洪武, 彭聪聪, 田铖, 王立原. 基于响应面法对桁架结构形状的优化设计[J]. 工程设计学报, 2018, 25(4): 457-464.
[14] 李彦奎, 吕彦明, 倪明明. 基于正交试验的航空叶片精锻模具磨损分析[J]. 工程设计学报, 2017, 24(6): 632-637.
[15] 杨诗怡, 张峰峰, 范立成, 匡绍龙, 孙立宁. 放疗床多目标协调机构参数优化研究[J]. 工程设计学报, 2016, 23(3): 256-263.