优化设计 |
|
|
|
|
精密磨床液体静压导轨承载特性分析与参数优化 |
张坤1( ),郭宏亮1,石有圣2,李洪凯1,赵栋杰1( ) |
1.聊城大学 机械与汽车工程学院,山东 聊城 252000 2.聊城市科技信息研究中心,山东 聊城 252000 |
|
Analysis of load-bearing characteristics and parameter optimization of hydrostatic guideway in precision grinding machine |
Kun ZHANG1( ),Hongliang GUO1,Yousheng SHI2,Hongkai LI1,Dongjie ZHAO1( ) |
1.School of Mechanical & Automotive Engineering, Liaocheng University, Liaocheng 252000, China 2.Liaocheng Science & Technology Information Research Center, Liaocheng 252000, China |
引用本文:
张坤,郭宏亮,石有圣,李洪凯,赵栋杰. 精密磨床液体静压导轨承载特性分析与参数优化[J]. 工程设计学报, 2025, 32(3): 393-402.
Kun ZHANG,Hongliang GUO,Yousheng SHI,Hongkai LI,Dongjie ZHAO. Analysis of load-bearing characteristics and parameter optimization of hydrostatic guideway in precision grinding machine[J]. Chinese Journal of Engineering Design, 2025, 32(3): 393-402.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.120
或
https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I3/393
|
[1] |
高殿荣, 赵建华, 张作超. 液体静压导轨单一导轨面内油腔数目的分析[J]. 工程力学, 2013, 30(4): 423-428, 441. GAO D R, ZHAO J H, ZHANG Z C. Analysis of number of oil-pockets in one slide surface of liquid hydrostatic slide[J]. Engineering Mechanics, 2013, 30(4): 423-428, 441.
|
[2] |
彭冲. 新型高液阻液体静压导轨的结构优化设计及特性分析[D]. 西安: 西安理工大学, 2014. PENG C. The structure optimization design and characteristic analysis of the new high liquid resistance of hydrostatic guideway[D]. Xi’an: Xi’an University of Technology, 2014.
|
[3] |
董鹏程. 超精密液体静压导轨静动态特性分析及控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. DONG P C. Analysis of the static and dynamic characteristics of ultra-precision hydrostatic guideway and its control technology research[D]. Harbin: Harbin Institute of Technology, 2013.
|
[4] |
仝志伟, 洪荣晶, 孙付仲. 基于静压导轨平面度误差的转台支承布局重构[J]. 制造技术与机床, 2022(2): 67-72. TONG Z W, HONG R J, SUN F Z. Reconstruction of turntable support layout based on flatness error of hydrostatic guide[J]. Manufacturing Technology & Machine Tool, 2022(2): 67-72.
|
[5] |
张伟. 定量供油开式液体静压环形导轨油膜厚度研究[J]. 机械工程师, 2011(7): 34-35. ZHANG W. Study on oil film thickness of open hydrostatic annular guide rail with quantitative oil supply[J]. Mechanical Engineer, 2011(7): 34-35.
|
[6] |
朴银川, 张宣, 张飞虎. 超精密机床液体静压导轨静动态特性研究[J]. 组合机床与自动化加工技术, 2020(10): 1-4, 8. PIAO Y C, ZHANG X, ZHANG F H. Research on static and dynamic characteristic of hydrostatic slide for ultra-precision machine tools[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(10): 1-4, 8.
|
[7] |
SHEN F, CHEN C L, LIU Z M. Effect of pocket geometry on the performance of a circular thrust pad hydrostatic bearing in machine tools[J]. Tribology Transactions, 2014, 57(4): 700-714.
|
[8] |
夏毅敏, 王洋, 胡均平, 等. 节流器结构参数对Nanosys-1000液体静压导轨承载特性的影响[J]. 光学 精密工程, 2015, 23(9): 2586-2594. doi:10.3788/ope.20152309.2586 XIA Y M, WANG Y, HU J P, et al. Influence of restrictor structural parameters on load-bearing characteristics of Nanosys-1000 hydrostatic guideway[J]. Optics and Precision Engineering, 2015, 23(9): 2586-2594.
doi: 10.3788/ope.20152309.2586
|
[9] |
杨添任. Nanosys-1000非球面加工机床液体静压导轨工作特性研究[D]. 长沙: 中南大学, 2013. YANG T R. Research of working characteristics of hydrostatic guideway of Nanosys-1000 aspherical machining tool[D]. Changsha: Central South University, 2013.
|
[10] |
应晔. 用于液体静压导轨的花岗岩材料结构分析与试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. YING Y. Structure analysis and experimental study of granite material applied in hydrostatic guide[D]. Harbin: Harbin Institute of Technology, 2008.
|
[11] |
陈燕生. 液体静压支承原理和设计[M]. 北京: 国防工业出版社, 1980: 33-35. CHEN Y S. Principle and design of hydrostatic bearing[M]. Beijing: National Defense Industry Press, 1980: 33-35.
|
[12] |
武鹏飞, 高峰, 李艳. 液体静压导轨初始液阻比的最优设计分析[J]. 机床与液压, 2019, 47(7): 76-79. WU P F, GAO F, LI Y. Optimal design of initial liquid resistance ratio of hydrostatic guide[J]. Machine Tool & Hydraulics, 2019, 47(7): 76-79.
|
[13] |
李晓会. 基于超精密车床闭式静压导轨节流器参数研究[J]. 制造技术与机床, 2023(8): 5-12, 31. LI X H. Research on parameters of flow regulators based on closed hydrostatic guideway of ultra-precision lathe[J]. Manufacturing Technology & Machine Tool, 2023(8): 5-12, 31.
|
[14] |
李典伦, 黄华, 邓文强. 数控机床液体静压导轨结构的优化设计[J]. 工程设计学报, 2020, 27(4): 448-455. LI D L, HUANG H, DENG W Q. Optimization design of structure of the hydrostatic guideway of NC machine tool[J]. Chinese Journal of Engineering Design, 2020, 27(4): 448-455.
|
[15] |
乔文通, 邵先月, 钱丽娟, 等. 响应面法优化空气喷嘴雾化流场的数值研究[J]. 机床与液压, 2021, 49(9): 149-157. QIAO W T, SHAO X Y, QIAN L J, et al. Numerical study on the optimization of atomization flow field in air nozzle using response surface methodology[J]. Machine Tool & Hydraulics, 2021, 49(9): 149-157.
|
[16] |
刘帅呈, 李俊, 资明康, 等. 基于响应面法的微结构抛光工具优化设计[J]. 模具工业, 2025, 51(3): 56-66. LIU S C, LI J, ZI M K, et al. Optimization design of micro-structure polishing tools based on response surface methodology[J]. Die & Mould Industry, 2025, 51(3): 56-66.
|
[17] |
邱春雷, 尹洋. 基于响应面法的小孔节流静压气体轴承多目标优化[J]. 润滑与密封, 2022, 47(7): 125-130. doi:10.3969/j.issn.0254-0150.2022.07.018 QIU C L, YIN Y. Multi-objective optimization of aerostatic bearing with orifice based on response surface method[J]. Lubrication Engineering, 2022, 47(7): 125-130.
doi: 10.3969/j.issn.0254-0150.2022.07.018
|
[18] |
李泽岩, 齐向阳, 吴承亮, 等. 液体静压轴承静态特性分析及其结构参数优化设计[J/OL]. 机电工程, 2025: 1-10 (2025-03-24) [2025-04-04]. . LI Z Y, QI X Y, WU C L, et al. Static characteristics analysis and structural parameter optimization design of hydrostatic bearing[J/OL]. Journal of Mechanical & Electrical Engineering, 2025: 1-10 (2025-03-24) [2025-04-04]. .
|
[19] |
黄小凯, 刘守文, 黄首清, 等. 基于响应面方法的轴承多应力加速模型建模与验证技术[J]. 哈尔滨工业大学学报, 2019, 51(7): 128-134. HUANG X K, LIU S W, HUANG S Q, et al. Modeling and verification technology of bearing multi-stress acceleration model based on response surface method[J]. Journal of Harbin Institute of Technology, 2019, 51(7): 128-134.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|