Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (1): 107-119    DOI: 10.3785/j.issn.1006-754X.2024.03.314
工业软件与重大装备集成设计     
基于人机工程学的民用飞机舱门操作面板设计
智文静1(),李国材1(),郑维娟1,张晨1,刘冬平1,才潇逸2
1.航空工业庆安集团有限公司 航空设备研究所,陕西 西安 710077
2.哈尔滨工程大学 机电工程学院,黑龙江 哈尔滨 201210
Design of civil aircraft cabin door operation panel based on ergonomics
Wenjing ZHI1(),Guocai LI1(),Weijuan ZHENG1,Chen ZHANG1,Dongping LIU1,Xiaoyi CAI2
1.Aviation Equipment Research Institute, AVIC Qing'an Group Co. , Ltd. , Xi'an 710077, China
2.College of Mechanical Electronical and Engineering, Harbin Engineering University, Harbin 201210, China
 全文: PDF(4603 KB)   HTML
摘要:

在当前民用飞机舱门操作面板设计中,人机功效和界面设计缺少统一的标准和规范,设计过程过于依赖个人经验和自身偏好,导致所设计的操作面板在使用过程中人机功效较差。为此,基于人机工程学原理讨论了民用飞机舱门操作面板显示与操作的设计原则,并提出了一种集中式舱门操作面板及区域控制面板的设计方案。首先通过问卷调查来确定舱门操作面板的信息组织、编码、显示元素和显示形式等,然后构建舱门操作面板、区域控制面板以及飞机的三维模型,最后使用人机工程仿真软件DELMIA对操作面板的布置、按键尺寸和触及域进行了动态操作仿真。仿真结果表明,所设计的舱门操作面板增强了人机功效,提高了作业的安全性和效率,减少了空乘人员的误操作和工作负荷。所设计的操作面板和区域控制面板不仅实现了整机舱门的集中监控管理与区域作动控制,还能作为人机交互设备,适用于大中型宽体飞机的客舱和货舱,应用前景十分广阔。

关键词: 民用飞机舱门操作面板人机功效仿真分析    
Abstract:

In the current civil aircraft cabin door operation panel design, there is a lack of unified standards and specifications for human-machine efficacy and interface design, and the design process overly relies on personal experience and personal preferences, resulting in poor human-machine efficacy of the designed operation panel during use. For this purpose, the design principles for the display and operation of the civil aircraft cabin door operation panel were discussed based on the ergonomics principle, and a design scheme of centralized cabin door operation panel and regional control panel was proposed. Firstly, the information organization, coding, display elements and display forms of the cabin door operation panel were determined through questionnaire survey. Then, the three-dimensional models of the cabin door operation panel, the regional control panel and the aircraft were conducted. Finally, the ergonomics simulation software DELMIA was used to conduct dynamic operation simulation on the layout, key size and touch area of the operation panel. The simulation results showed that the designed cabin door operation panel could enhance the human-machine efficacy, improve the safety and efficiency of the operation, and reduce the misoperation and workload of flight attendants. The designed operation panel and regional control panel not only realize centralized monitoring and management and regional actuation control for the entire cabin door, but also can be used as a human-machine interaction device, which is suitable for the cabin and cargo hold of large-sized wide-body aircraft in the future, and has a very broad application prospect.

Key words: civil aircraft    cabin door    operation panel    human-machine efficacy    simulation analysis
收稿日期: 2023-10-20 出版日期: 2024-03-04
CLC:  TH 114  
基金资助: 工业和信息化部民用飞机专项科研资助项目(MJZ-2018-S-43)
通讯作者: 李国材     E-mail: zhiwj001@avic.com;ligc017@avic.com
作者简介: 智文静(1985—),男,宁夏银川人,高级工程师,硕士,从事民用飞机舱门作动控制技术及数字化、智能化设计研究,E-mail: zhiwj001@avic.com,https://orcid.org/0009-0006-2424-3439
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
智文静
李国材
郑维娟
张晨
刘冬平
才潇逸

引用本文:

智文静,李国材,郑维娟,张晨,刘冬平,才潇逸. 基于人机工程学的民用飞机舱门操作面板设计[J]. 工程设计学报, 2024, 31(1): 107-119.

Wenjing ZHI,Guocai LI,Weijuan ZHENG,Chen ZHANG,Dongping LIU,Xiaoyi CAI. Design of civil aircraft cabin door operation panel based on ergonomics[J]. Chinese Journal of Engineering Design, 2024, 31(1): 107-119.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.314        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I1/107

图1  空客A380飞机的登机门操作面板
图2  波音B747-800飞机的后货舱门操作面板
图3  波音B787飞机的主货舱门操作面板
图4  民用飞机舱门操作面板人机界面设计准则的筛选流程
图5  登机门操作面板外观设计
图6  货舱门操作面板外观设计
图7  舱门主显控面板人机界面功能层级
图8  登机门操作面板的布局设计与尺寸
评价指标标准值1)测量值满足情况
按键直径D1/mm4.75~12.5011.89满足
按键间距d1/mm1328.06满足
表1  登机门操作面板布局验证结果
图9  货舱门操作面板的布局设计与尺寸
评价指标标准值1)测量值满足情况
钮子开关臂长L1/mm13~5017.9满足
钮子开关调节角度θ/(°)30~8030满足
钮子开关控制杆顶部直径D2/mm3~256.1满足
按键间距d2/mm1324满足
表2  货舱门操作面板布局验证结果
图10  舱门主显控面板人机界面布局设计技术路线
图11  舱门主显控面板的人机界面布局
评价指标标准值1)测量值满足情况
触摸按键尺寸lw/mm

15 ≤ l ≤ 50

15 ≤ w ≤ 40

l=24.30

w=15.15

满足

满足

触摸按键间距abcdefghijkm/mm3a=7.300满足
b=12.250满足
c=14.350满足
d=4.975满足
e=4.975满足
f=4.975满足
g=13.240满足
h=9.200满足
i=35.910满足
j=5.650满足
k=11.640满足
m=5.650满足
表3  舱门主显控面板布局验证结果
序号图标图标语义语义是否可知
1登机门关闭□可知 □不可知
2货舱门关闭□可知 □不可知
3登机门开启□可知 □不可知
4货舱门开启□可知 □不可知
5白昼模式□可知 □不可知
6夜晚模式□可知 □不可知
表4  舱门主显控面板图标语义可知性调查问卷
可用性指标平均分
易学性4.69
易用性4.57
有效性4.67
效率4.54
美观度4.73
可视化程度4.68
操作反馈4.65
用户满意度4.66
表5  舱门主显控面板可用性指标的得分情况
图12  舱门操作面板可视化触及域仿真流程
图13  人体主要尺寸参数
图14  人体上部主要尺寸参数
尺寸参数P95男P5女
身高177.5148.4
上臂长33.826.2
前臂长25.819.3
大腿长50.540.2
小腿长40.331.3
眼高166.4137.1
肩高145.5119.5
肘高109.689.9
手功能高80.165.0
会阴高85.667.3
胫骨点高48.137.7
表6  人体主要尺寸参数的取值 (cm)
尺寸参数P95男P5女备注
站姿肩高148.0121.5
手功能长79.261.4

操作触摸类设备

操作按键类设备

78.060.2
表7  修正后的站姿身高及手功能长 (cm)
图15  飞机三维模型
操作面板安装位置距客舱地板高度/mm左右两边距离/mm
舱门主显控面板登机门空乘人员座椅上方1 300850
登机门操作面板登机门右侧机身1 300200
货舱门操作面板货舱门右侧机身1 300200
表8  三型舱门操作面板的安装位置及定位尺寸
图16  P95男人体模型
图17  P5女人体模型
图18  登机门操作面板P95男触及域仿真结果
图19  登机门操作面板P5女触及域仿真结果
图20  货舱门操作面板P95男触及域仿真结果
图21  货舱门操作面板P5女触及域仿真结果
图22  舱门主显控面板P95男触及域仿真结果
图23  舱门主显控面板P5女触及域仿真结果
1 宋小青,沈玺.基于人机工程学的控制面板设计研究[J].装备制造技术,2006(4):67-69. doi:10.3969/j.issn.1672-545X.2006.04.028
SONG X Q, SHEN X. Study on control panel design based on ergonomics[J]. Equipment Manufacturing Technology, 2006(4): 67-69.
doi: 10.3969/j.issn.1672-545X.2006.04.028
2 纪兵,毛保全.遥控武器站武器系统人机界面初步设计[J].兵工自动化,2009,28(7):89-93. doi:10.3969/j.issn.1006-1576.2009.07.032
JI B, MAO B Q. Pilot design of weapon system man-machine interface for weapon station[J]. Ordnance Industry Automation, 2009, 28(7): 89-93.
doi: 10.3969/j.issn.1006-1576.2009.07.032
3 矿英姬.数控机床中人机工学应用研究[D].武汉:华中科技大学,2004:7-16.
KUANG Y J. Application study on NC machine based on ergonomics[D]. Wuhan: Huazhong University of Science & Technology, 2004: 7-16.
4 刘瑞康.基于认知机理的船舶监控系统软件界面设计与评价[D].哈尔滨:哈尔滨工程大学,2017:18-34.
LIU R K. The design and evaluation of ship monitoring and control system based on cognitive mechanism[D]. Harbin: Harbin Engineering University, 2017: 18-34.
5 丁玉兰.人机工程学[M].5版.北京:北京理工大学出版社,2017:46-57.
DING Y L. Man machine ergonomics[M]. 5th ed. Beijing: Beijing Institute of Technology Press, 2017: 46-57.
6 马雨薇.耙吸式挖泥船疏浚监控界面设计与评价[D].哈尔滨:哈尔滨工程大学,2019:10-16.
MA Y W. Design and evaluation of dredging monitoring interface for rake suction dredger[D]. Harbin: Harbin Engineering University, 2019: 10-16.
7 王坤茜.基于人机工程学的数控机床控制面板设计[J]. 机械设计与制造工程,2003,32(3):94-96. doi:10.3969/j.issn.1672-1616.2003.03.028
WANG K Q. Design of control panel for NC machine tools based on ergonomics[J]. Machine Design and Manufacturing Engineering, 2003, 32(3): 94-96.
doi: 10.3969/j.issn.1672-1616.2003.03.028
8 王保国,王新泉,刘淑艳,等.安全人机工程学[M].2版.北京:机械工业出版社,2022:210-220. doi:10.46234/ccdcw2023.016
WANG B G, WANG X Q, LIU S Y, et al. Safety ergonomics[M]. 2nd ed. Beijing: China Machine Press, 2022: 210-220.
doi: 10.46234/ccdcw2023.016
9 孟庆强.基于人机工程学的机械操作面板设计研究[J]. 工业仪表与自动化装置,2011(6):8-10. doi:10.3969/j.issn.1000-0682.2011.06.003
MENG Q Q. The machinery operation panel design and study based on man-machine engineering[J]. Industrial Instrumentation & Automation, 2011(6): 8-10.
doi: 10.3969/j.issn.1000-0682.2011.06.003
10 吴潇伟.基于视觉注意机制的船舶导航雷达显控界面设计与评价[D].哈尔滨:哈尔滨工程大学,2019:62-73.
WU X W. Design and evaluation of ship navigation radar display and control interface based on visual attention mechanism[D]. Harbin: Harbin Engineering University, 2019: 62-73.
11 童时中,童和钦.电子设备及系统人机工程设计[M].2版.北京:电子工业出版社,2022:55-70.
TONG S Z, TONG H Q. Ergonomic design of electronic equipment and systems[M]. 2nd ed. Beijing: Electronic Industry Press, 2022: 55-70.
12 中国航空工业总公司. 飞机座舱信息显示基本要求: [S].北京:航空工业出版社,1998:2-7.
China Aviation Industry Corporation. Basic requirements for aircraft cockpit information display: [S]. Beijing: Aviation Industry Press, 1998: 2-7.
13 中国航空工业总公司. 民用飞机货舱舱门设计要求: [S].北京:航空工业出版社,2014:12-17.
China Aviation Industry Corporation. Requirements of cargo door design for civil aircraft: [S]. Beijing: Aviation Industry Press, 2014: 12-17.
14 全国人类工效学标准化技术委员会. 系统交互工效学 第11部分 可用性:定义和概念: [S].北京:中国标准出版社,2023:11-16.
National Technical Committee for Standardization of Ergonomics. Ergonomics of human-system interaction—Part 11: usability: definitions and concepts: [S]. Beijing: Standards Press of China,2023: 11-16.
15 中国航空工业总公司. 航空装备信息显示人机工程设计准则: [S].北京:航空工业出版社,2012:9-10.
China Aviation Industry Corporation. Human engineering design criteria for information display of aviation equipments: [S]. Beijing: Aviation Industry Press, 2012: 9-10.
16 中国航空工业总公司. 航空装备交互与管理人机工程设计准则: [S].北京:航空工业出版社,2012:17-20.
China Aviation Industry Corporation. Human engineering design criteria for user-interface interaction and management of aviation equipments: [S]. Beijing: Aviation Industry Press, 2012: 17-20.
17 国家标准化管理委员会. 人机界面标志标识的基本和安全规则 指示器和操作器件的编码规则: [S].北京:中国标准出版社,2010:8-11.
Standardization Administration of China. Basic and safety principles for man-machine interface, marking and identification: coding principles for indicators and actuators: [S]. Beijing: Standards Press of China, 2010: 8-11.
18 O'HARA J, BROWN W, LEWIS P, et al. Human- system interface design review guidelines: NUREG-0700, Rev.2 [S]. Washington, DC: United Status Nuclear Regulatory Commission, 2002: 110-120.
19 国防科学技术工业委员会. 军事装备和设施的人机工程设计准则: [S].北京:国防工业出版社,1997:12-16.
Commission of Science, Technology and Industry for National Defence. Human engineering design criteria for military equipment and facilities: [S]. Beijing: National Defense Industry Press, 1997: 12-16.
20 中国航空工业总公司. 航空装备控制器人机工程设计准则: [S].北京:航空工业出版社,2012:12-16.
China Aviation Industry Corporation. Human engineering design criteria for control of aviation equipments: [S]. Beijing: Aviation Industry Press, 2012: 12-16.
21 钮建伟,刘静,冉令华.DELMIA人机工程从入门到精通[M].北京:电子工业出版社,2018:24-27.
NIU J W, LIU J, RAN L H. DELMIA ergonomics from introduction to mastery[M]. Beijing: Electronic Industry Press, 2018: 24-27.
22 国家标准化管理委员会. 中国成年人人体尺寸: [S].北京:中国标准出版社,1988:2-10.
Standardization Administration of China. Human dimensions of Chinese adults: [S]. Beijing: Standards Press of China, 1988: 2-10.
[1] 田立勇,唐瑞,于宁,陈洪月. 带式输送机更换托辊用皮带举升机构设计与应用[J]. 工程设计学报, 2023, 30(6): 667-677.
[2] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[3] 唐绍禹,吴杰,张辉,邓兵兵,黄禹铭,黄浩. 多极式磁流变离合器温度场仿真与实验研究[J]. 工程设计学报, 2022, 29(4): 484-492.
[4] 樊霄岳, 刘启, 官威, 朱云, 陈苏琳, 沈彬. 电磁微锻机构热效应模拟与实验研究[J]. 工程设计学报, 2022, 29(1): 66-73.
[5] 张勤, 庞业忠, 王凯. 机器人踩踏式除草过程仿真分析与试验研究[J]. 工程设计学报, 2021, 28(6): 709-719.
[6] 张沈瞳. 基于虚拟样机技术的飞机起落架着陆载荷分析[J]. 工程设计学报, 2021, 28(6): 758-763.
[7] 陈振, 熊涛, 杨延青, 薛晓伟. 可溶球座密封环密封性能分析与结构优化[J]. 工程设计学报, 2021, 28(6): 720-728.
[8] 于如飞, 寇鑫, 陈渭. 基于CFD的新型表面织构仿真分析[J]. 工程设计学报, 2021, 28(4): 466-472.
[9] 王玉璞, 程文明, 杜润, 王书标, 杨行舟, 翟守才. 大型门式起重机风荷载响应仿真分析[J]. 工程设计学报, 2020, 27(2): 239-246.
[10] 郝地龙, 何霞, 王国荣, 易建国, 陈彰斌. 整体式卡瓦齿槽结构优化[J]. 工程设计学报, 2019, 26(5): 534-543.
[11] 王克飞, 时培成, 彭闪闪, 刁杰胜. 不同边界约束条件下某汽车白车身静刚度分析[J]. 工程设计学报, 2019, 26(4): 441-451.
[12] 陈昭明, 徐泽宇, 邹劲松, 赵迎, 石明全. 隧道施工多功能铺设台车液压系统设计及其响应特征分析[J]. 工程设计学报, 2019, 26(1): 116-122.
[13] 范曙远, 王海波, 吴小笛, 张乐, 张龙. 工业装配外骨骼机械臂承重性能研究[J]. 工程设计学报, 2018, 25(6): 697-702.
[14] 张钊, 张继忠. 自动落纱机自适应纱管夹持器设计及其动力学仿真研究[J]. 工程设计学报, 2018, 25(5): 539-545.
[15] 刘小龙, 赵彦峻, 葛文庆, 王滢, 张忠东. 医疗助力下肢外骨骼设计及动力学仿真分析[J]. 工程设计学报, 2016, 23(4): 327-332.