Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (1): 98-106    DOI: 10.3785/j.issn.1006-754X.2024.03.308
工业软件与重大装备集成设计     
环境风载荷下大口径反射面天线波束指向分析
栾天1(),薛松1,2(),连培园1,2,余佳恒1,杜雨轩1,王猛3,赵武林4,卢波5,许谦6,王从思2
1.西安电子科技大学 机电工程学院,陕西 西安 710071
2.西安电子科技大学 广州研究院,广东 广州 510555
3.陕西黄河集团有限公司,陕西 西安 710043
4.中国电子科技集团有限公司 第三十九研究所,陕西 西安 710065
5.湖北省鄂州市天元砂辊有限责任公司,湖北 鄂州 436001
6.中国科学院 新疆天文台,新疆 乌鲁木齐 830011
Analysis of beam pointing of large aperture reflector antenna under ambient wind load
Tian LUAN1(),Song XUE1,2(),Peiyuan LIAN1,2,Jiaheng YU1,Yuxuan DU1,Meng WANG3,Wulin ZHAO4,Bo LU5,Qian XU6,Congsi WANG2
1.School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
2.Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
3.Shaanxi Huanghe Group Co. , Ltd. , Xi'an 710043, China
4.The 39th Research Institute, China Electronics Technology Group Corporation, Xi'an 710065, China
5.Hubei Ezhou Tianyuan Grinding Wheel Co. , Ltd. , Ezhou 436001, China
6.Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
 全文: PDF(4606 KB)   HTML
摘要:

大口径反射面天线是深空探测、卫星通信的关键设备。为了不断提高观测性能,天线口径不断增大,进而对天线指向精度的要求越来越高。随着天线口径的增大,天线的刚度降低、迎风面积增大,这会导致天线的柔性变形严重,性能难以保证。为探究环境风载荷下大口径反射面天线的柔性变形对电性能的影响,提出了一种天线波束指向分析模型。首先,利用计算流体力学方法对天线表面的风压分布情况进行了数值模拟,得到了天线表面的风压系数。然后,利用风压系数与风速无关的特性,分析了不同风速工况下天线结构变形的规律。最后,根据天线结构变形的特点,分析了天线在不同工作状态下的增益损失、指向偏差等的变化规律。结果表明,所提出的模型可以快速评估大口径反射面天线在风载荷下的变形情况和波束指向特性,这为后续的天线抗风结构设计与系统控制研究提供了理论指导。

关键词: 反射面天线风载荷风压系数柔性变形波束指向特性    
Abstract:

Large aperture reflector antenna is the key equipment for deep space exploration and satellite communication. In order to continuously improve the observation performance, the antenna aperture is increasing, and the antenna pointing accuracy requirements are higher and higher. With the increase of antenna aperture, the stiffness of antenna decreases while the windward area increases, which leads to serious flexible deformation of antenna and difficult to guarantee its performance. In order to investigate the influence of flexible deformation of large aperture reflector antenna on electrical performance under ambient wind load, a beam pointing analysis model for antenna is proposed. Firstly, the computational fluid dynamics method was used to numerically simulate the wind pressure distribution on the antenna surface, and the wind pressure coefficient of the antenna surface was obtained. Then, the deformation law of the antenna structure under different wind speed conditions was analyzed by using the independent characteristic of wind pressure coefficient and wind speed. Finally, according to the deformation characteristics of the antenna structure, the variation patterns of gain loss and pointing deviation of the antenna under different working states were analyzed. The results show that the proposed model can quickly evaluate the deformation and beam pointing characteristics of large aperture antennas under wind load, which provides theoretical guidance for the subsequent wind-resistant structure design and system control study of antennas.

Key words: reflector antenna    wind load    wind pressure coefficient    flexible deformation    beam pointing characteristic
收稿日期: 2023-10-20 出版日期: 2024-03-04
CLC:  TH 751  
基金资助: 国家重点研发计划资助项目(2021YFC2203600);国家自然科学基金资助项目(52275268);国防基础科研计划资助项目(JCKY2021210B007);陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-030);芜湖-西电产学研合作专项资金资助项目(XWYCXY-012021012)
通讯作者: 薛松     E-mail: luan_tian0@163.com;sxue@xidian.edu.cn
作者简介: 栾 天(1999—),男,黑龙江大庆人,博士生,从事大口径天线结构变形控制研究,E-mail: luan_tian0@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
栾天
薛松
连培园
余佳恒
杜雨轩
王猛
赵武林
卢波
许谦
王从思

引用本文:

栾天,薛松,连培园,余佳恒,杜雨轩,王猛,赵武林,卢波,许谦,王从思. 环境风载荷下大口径反射面天线波束指向分析[J]. 工程设计学报, 2024, 31(1): 98-106.

Tian LUAN,Song XUE,Peiyuan LIAN,Jiaheng YU,Yuxuan DU,Meng WANG,Wulin ZHAO,Bo LU,Qian XU,Congsi WANG. Analysis of beam pointing of large aperture reflector antenna under ambient wind load[J]. Chinese Journal of Engineering Design, 2024, 31(1): 98-106.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.308        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I1/98

图1  CFD数值模拟流程
图2  大口径反射面天线计算域模型
俯仰角反射面正面反射面背面
15°
30°
45°
60°
75°
90°
表1  不同俯仰角下天线反射面表面的风压系数
图3  天线反射面面板表面风压系数随俯仰角的变化趋势
图4  天线反射面表面平均风压系数的近似计算
图5  不同俯仰角下天线反射面的变形情况
图6  不同俯仰角下天线反射面的变形极值
图7  不同风速、俯仰角下天线反射面变形量的RMSE
图8  大口径反射面天线波束指向分析流程
图9  6 m/s风速下天线的方向图
图10  6 m/s风速下天线的增益损失
图11  6 m/s风速下天线第一副瓣电平的变化情况
1 严粤飞,王从思,李帅,等.大型射电望远镜天线发展动态及机电耦合应用[J].中国科学:物理学 力学 天文学,2022,52(12):129501. doi:10.1360/sspma-2022-0121
YAN Y F, WANG C S, LI S, et al. Development of large-aperture radio telescopes and applications of coupled structural-electromagnetic theory[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(12): 129501.
doi: 10.1360/sspma-2022-0121
2 王从思,肖岚,项斌斌,等.大型射电望远镜天线主动面补偿研究进展[J].中国科学:物理学 力学 天文学,2017,47(5):059503. doi:10.1360/sspma2017-00011
WANG C S, XIAO L, XIANG B B, et al. Development of active surface technology of large radio telescope antennas[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(5): 059503.
doi: 10.1360/sspma2017-00011
3 张增太.风载荷在雷达天线结构设计中的考虑[J].雷达科学与技术,1997(4):58-61.
ZHANG Z T. Consideration of wind load in radar antenna structure design[J]. Radar Science and Technology, 1997(4): 58-61.
4 OLMI L, MAUSKOPF P D. A comparison of radome- and astrodome-enclosed large radio telescopes at millimeter wavelengths: the large millimeter telescope[J]. Radio Science, 1999, 34(3): 733-746.
5 KIM J K, PARK S, JIN T. Simplified fuzzy-PID controller of data link antenna system for moving vehicles[C]//PRICAI'06: Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence. Heidelberg: Springer-Verlag, 2006: 1083-1088.
6 GAWRONSKI W. Antenna control systems: from PI to H∞[J]. IEEE Antennas and Propagation Magazine, 2001, 43(1): 52-60.
7 LIN J M, CHANG P K. Intelligent PD-type fuzzy controller design for mobile satellite antenna tracking system with parameter variations effect[C]// Computational Intelligence in Control and Automation (CICA), Paris, Apr. 11-15, 2011.
8 TANG T, NIU S X, MA J G, et al. A review on control methodologies of disturbance rejections in optical telescope[J]. Opto-Electronic Advances, 2019, 2(10): 190011.
9 TAMURA T, NOZAWA K, KONDO K. AIJ guide for numerical prediction of wind loads on buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 1974-1984.
10 YOUNG D, DAVID S. Numerical simulations of airflow in telescope enclosures[J]. The Astronomical Journal, 1996, 112: 2896.
11 DU Q, DU P A. Computation of fluctuating wind pressure and wind loads on phased-array antennas[J]. IEEE Antennas and Propagation Magazine, 2012, 54(1): 66-75.
12 杜强.雷达天线风载特性的数值计算方法及应用研究[D].成都:电子科技大学,2011:21-34.
DU Q. Research and application on numerical method for characteristic computation of wind loads on radar antennas[D]. Chengdu: University of Electronic Science and Technology of China, 2011: 21-34.
13 王春圆.巨型射电望远镜风荷载特性的数值模拟研究[D].哈尔滨:哈尔滨工业大学,2012:76-85.
WANG C Y. Numerical simulation study on characteristics of wind loads of huge radio telescope[D]. Harbin: Harbin Institute of Technology, 2012: 76-85.
14 刘岩,钱宏亮,范峰.大型射电望远镜结构风荷载特性研究[J].红外与激光工程,2015,44(1):148-156. doi:10.3969/j.issn.1007-2276.2015.01.026
LIU Y, QIAN H L, FAN F. Wind load characteristics of large radio telescope[J]. Infrared and Laser Engineering, 2015, 44(1): 148-156.
doi: 10.3969/j.issn.1007-2276.2015.01.026
15 LADD J, SLOTNICK J, NORBY W, et al. Computational fluid dynamics modeling and analysis for the Giant Magellan Telescope (GMT)[C]//SPIE Astronomical Telescopes + Instrumentation, Edinburgh, Jun. 26-Jul. 1, 2016.
16 纪兵兵,陈金瓶.ANSYS ICEM CFD网格划分技术实例详解[M].北京:中国水利水电出版社,2012:67-99.
JI B B, CHEN J P. Detailed explanation of ANSYS ICEM CFD mesh division technology example[M]. Beijing: China Water & Power Press, 2012: 67-99.
17 林斌.CFD模拟技术在大型复杂结构工程中的应用[D].哈尔滨:哈尔滨工业大学,2005:42-70.
LIN B. Application of CFD simulation technology in large and complex structural engineering[D]. Harbin: Harbin Institute of Technology, 2005: 42-70.
18 王娜.新疆奇台110米射电望远镜[J].中国科学:物理学 力学 天文学,2014,44(8):783-794. doi:10.1360/sspma2014-00039
WANG N. Xinjiang Qitai 110 m radio telescope[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(8): 783-794.
doi: 10.1360/sspma2014-00039
19 RAHMAT-SAMII Y. A comparison between GO/aperture-field and physical-optics methods of offset reflectors[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(3): 301-306.
20 张洁.大型反射面天线抗风扰控制补偿关键技术研究[D].西安:西安电子科技大学,2016:60-100.
ZHANG J. Research on key technologies of control compensation for large antenna under wind disturbance[D]. Xi’an: Xidian University, 2016: 60-100.
[1] 刘政,王兵振,何改云,张原飞,程绪宇. 极区集成式光伏供电装置结构设计与分析[J]. 工程设计学报, 2022, 29(4): 493-499.
[2] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.