Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (4): 493-499    DOI: 10.3785/j.issn.1006-754X.2022.00.049
整机和系统设计     
极区集成式光伏供电装置结构设计与分析
刘政1,2(),王兵振1(),何改云2,张原飞1,程绪宇3
1.国家海洋技术中心,天津 300112
2.天津大学 机构理论与装备设计教育部重点实验室,天津 300072
3.中国极地研究中心,上海 200136
Structure design and analysis of integrated photovoltaic power supply device in polar regions
Zheng LIU1,2(),Bing-zhen WANG1(),Gai-yun HE2,Yuan-fei ZHANG1,Xu-yu CHENG3
1.National Ocean Technology Center, Tianjin 300112, China
2.Key Laboratory of Mechanism Theory and;Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China
3.Polar Research Institute of China, Shanghai 200136, China
 全文: PDF(2057 KB)   HTML
摘要:

太阳能独立供电是解决南极野外长周期观测活动供电问题的重要途径之一。针对极区特定环境,设计了一种基于集装箱的可移动光伏供电装置。首先,构建了在结构集成化约束条件下光伏组件斜面上太阳辐射量计算模型,确定了光伏组件最优安装倾角;其次,利用CFD (computational fluid dynamics,流体动力学)方法分析了在最优安装倾角、不同风向角时光伏组件的风载荷,并确定了光伏组件的典型风载荷工况;最后,通过有限元方法分析了在典型工况下光伏支架的力学性能。结果表明,对于集成式双排光伏组件,上、下排光伏组件的最优安装倾角分别为29°、39°。光伏组件存在3种典型工况:当风向角为20°时,2排光伏组件均受到下压作用;当风向角为120°时,一排光伏组件受下压作用,另一排受上抬作用;当风向角为140°时,2排光伏组件均受到上抬作用。在3种典型工况下,光伏支架的最大应力为103.93 MPa,安全系数达2.98,满足强度要求;2排光伏支架铰接处的变形较大,最大值为4.33 mm;支架变形分布受风向影响较大,其中来风侧变形量达3.7 mm,另一侧变形量小于1 mm。研究结果可以为解决极区野外长周期独立观测活动的电能供给问题提供一定的参考。

关键词: 南极光伏组件集成化风载荷力学性能    
Abstract:

Solar energy independent power supply is one of the important ways to solve the power supply problem of long-term field observation activities in the Antarctic region. According to the specific environment of polar region, a mobile photovoltaic (PV) power supply device based on container was designed. Firstly, the calculation model of solar radiation on the inclined plane of PV modules under the constraint of structural integration was constructed, and the optimal inclination angle of PV modules was determined; secondly, CFD (computational fluid dynamics) method was used to analyze the wind load of PV modules at the optimal inclination angle and different wind direction angles, and the typical wind load conditions of PV modules were determined; finally, the mechanical properties of PV bracket under typical working conditions were analyzed by finite element method. The results showed that for the integrated double row PV modules, the optimal inclination angle of the upper and lower rows of PV modules were 29° and 39° respectively. There were three typical working conditions for PV modules: when wind direction angle was 20°, all PV modules were subject to downward pressure; when wind direction angle was 120°, one row of PV modules was subject to downward pressure and the other row was subject to upward lifting; when wind direction angle was 140°, both rows were subject to upward lifting. Under three typical working conditions, the maximum stress of the PV bracket was 103.93 MPa, and the safety factor was 2.98, which met the strength requirements; the hinge joint of 2 rows of PV brackets had large deformation, with the maximum value of 4.33 mm; the bracket deformation distribution was greatly affected by wind direction, in which the deformation on the windward side was up to 3.7 mm, and the deformation on the other side was less than 1 mm. The research results can provide some reference for solving the power supply problem of long-term field independent observation activities in the polar region.

Key words: Antarctic    photovoltaic modules    integration    wind load    mechanical performance
收稿日期: 2021-05-31 出版日期: 2022-09-05
CLC:  TK 73  
基金资助: 国家重点研发计划资助项目(2018YFB1503003)
通讯作者: 王兵振     E-mail: zheng_liu621@163.com;wang_bingzhen@163.com
作者简介: 刘 政(1996—),男,山东滨州人,硕士生,从事计算流体力学研究,E-mail:zheng_liu621@163.comhttps://orcid.org/0000-0002-6865-337X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘政
王兵振
何改云
张原飞
程绪宇

引用本文:

刘政,王兵振,何改云,张原飞,程绪宇. 极区集成式光伏供电装置结构设计与分析[J]. 工程设计学报, 2022, 29(4): 493-499.

Zheng LIU,Bing-zhen WANG,Gai-yun HE,Yuan-fei ZHANG,Xu-yu CHENG. Structure design and analysis of integrated photovoltaic power supply device in polar regions[J]. Chinese Journal of Engineering Design, 2022, 29(4): 493-499.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.049        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I4/493

图1  光伏组件集成装置的总体结构
图2  南极中山站2018年太阳日辐射量
图3  光伏组件安装倾角示意
月份α/(°)β/(°)

太阳辐射量/

(kWh/m2

13333250.91
23333169.12
3392984.22
9392992.07
103333166.55
113333223.64
123333255.59
表1  光伏组件最优安装倾角与斜面上最大太阳辐射量
图4  光伏组件风载荷计算模型及其网格划分
图5  风向角为0°时光伏发电装置风流场的局部流线图
图6  不同风向角时光伏组件的CpN值
风向角/(°)最大应力/MPa最大变形/mm
20103.934.33
12088.233.73
14086.083.67
表2  不同风向角时光伏支架所受最大应力及最大变形
图7  风向角为20°时光伏支架的应力分布云图
图8  风向角为120°时光伏支架的变形云图
1 CHEN L. The role of the Arctic and Antarctic and their impact on global climate change: Further findings since the release of IPCC AR4, 2007[J]. Advances in Polar Science, 2013, 24(2): 79-85. doi:10.3724/sp.j.1085. 2013.00079
doi: 10.3724/sp.j.1085. 2013.00079
2 CHEEK J, HUYGE B, DE POMEREU J. Princess Elisabeth Antarctica: An International Polar Year outreach and media success story[J]. Polar Research, 2011, 30(1): 11153. doi:10.3402/polar.v30i0.11153
doi: 10.3402/polar.v30i0.11153
3 DE CHRISTO T M, FARDIN J F, SIMONETTI D S L, et al. Design and analysis of hybrid energy systems: The Brazilian Antarctic Station case[J]. Renewable Energy, 2016, 88: 236-246. doi:10.1016/j.renene.2015.11.014
doi: 10.1016/j.renene.2015.11.014
4 OBARA S, HAMANAKA R, EL-SAYED A G. Design methods for microgrids to address seasonal energy availability: A case study of proposed Showa Antarctic Station retrofits[J]. Applied Energy, 2019, 236: 711-727. doi:10.1016/j.apenergy.2018.12.031
doi: 10.1016/j.apenergy.2018.12.031
5 BOCCALETTI C, DI FELICE P, SANTINI E. Integration of renewable power systems in an Antarctic Research Station[J]. Renewable Energy, 2014, 62: 582-591. doi:10.1016/j.renene.2013.08.021
doi: 10.1016/j.renene.2013.08.021
6 吕俊杰.极端条件下直流微型电网的研究与开发[D].南京:东南大学,2011:50-60.
Jun-jie LÜ. Research and development of DC micro-grid in low condition[D]. Nanjing: Southeast University, 2011: 50-60.
7 席晓琴.南极中山站风光互补供电系统设计[D].太原:太原理工大学,2018:7-20.
XI Xiao-qin. Design of wind and solar complementary power supply system in Antarctica Zhongshan Station[D]. Taiyuan: Taiyuan University of Technology, 2018:7-20.
8 吕冬翔,李钏,王哲超,等.南极泰山站多能互补微电网系统研究及实证[J].极地研究,2020,32(2):184-194.
Dong-xiang LÜ, LI Chuan, WANG Zhe-chao, et al. Design and implementation of a multi-energy complementary microgrid system at Taishan Station, Antarctica[J]. Chinese Journal of Polar Research, 2020, 32(2): 184-194.
9 王兵振,张原飞,程绪宇.南极中山站30 kW光伏发电系统工作特性研究[J].太阳能学报,2021,42(4):272-277.
WANG Bing-zhen, ZHANG Yuan-fei, CHENG Xu-yu. Study on characteristics of 30 kW PV system in Zhongshan station, Antarctica[J]. Acta Energiae Solaris Sinica, 2021, 42(4): 272-277.
10 孙弘历,段梦凡,赵海湉,等.国内外南极科考站建筑节能策略[J].建筑节能,2020,48(9):1-7,35. doi:10.3969/j.issn.1673-7237.2020.09.001
SUN Hong-li, DUAN Meng-fan, ZHAO Hai-tian, et al. Energy-saving strategies of Chinese and Foreign Antarctic scientific research stations[J]. Building Energy Efficiency, 2020, 48(9): 1-7, 35.
doi: 10.3969/j.issn.1673-7237.2020.09.001
11 王炳忠.中国太阳能资源利用区划[J].太阳能学报,1983,4(3):221-228.
WANG Bing-zhong. Solar energy resource division in China[J]. Acta Energiae Solaris Sinica, 1983, 4(3): 221-228.
12 刘湘,罗云兵,陈宏.南极中山站蔬菜生产温室项目结构设计[J].建筑结构,2020,50(12):95-99.
LIU Xiang, LUO Yun-bing, CHEN Hong. Structural design of vegetable production greenhouse project in Antarctic Zhongshan Station[J]. Building Structure, 2020, 50(12): 95-99.
13 KLEIN S A, THEILACHER J C. An algorithm for calculating monthly-average radiation on inclined surfaces[J]. Journal of Solar Energy Engineering, 1981, 103: 29-33. doi:10.1115/1.3266201
doi: 10.1115/1.3266201
14 陈艳,张科智,鲁长琴.固定式光伏方阵最佳倾角的计算与分析[J].太阳能学报,2019,40(6):1567-1575.
CHEN Yan, ZHANG Ke-zhi, LU Chang-qin. Calculation and analysis of optimum tilted angle for fixed photovoltaic array[J]. Acta Energiae Solaris Sinica, 2019, 40(6): 1567-1575.
15 TRIPATHY M, YADAV S, PANDA S K, et al. Performance of building integrated photovoltaic thermal systems for the panels installed at optimum tilt angle[J]. Renewable Energy, 2017, 113: 1056-1069. doi:10.1016/j.renene.2017.06.052
doi: 10.1016/j.renene.2017.06.052
16 JUBAYER C M, HANGAN H. Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 134: 56-64. doi:10.1016/j.jweia.2014.08.008
doi: 10.1016/j.jweia.2014.08.008
17 张炜,薛建阳,黄华,等.大倾角地面太阳电池板风荷载数值模拟研究[J].太阳能学报,2021,42(6):138-145.
ZHANG Wei, XUE Jian-yang, HUANG Hua, et al. Numerical simulation of wind load on solar cell panel with high-inclination[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 138-145.
18 WANG J, VAN P P, YANG Q, et al. LES study of wind pressure and flow characteristics of flat-roof-mounted solar arrays[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198: 104096. doi:10. 1016/j.jweia.2020.104096
doi: 10. 1016/j.jweia.2020.104096
19 JUBAYER C M, HANGAN H. A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 153: 60-70. doi:10.1016/j.jweia.2016.03.009
doi: 10.1016/j.jweia.2016.03.009
20 牛斌,张超,侯巍,等.基于CFD方法的地面光伏阵列风压时程特性研究[J].太阳能学报,2016,37(7):1774-1779. doi:10.3969/j.issn.0254-0096.2016.07.024
NIU Bin, ZHANG Chao, HOU Wei, et al. Time history analysis of wind load on arrayed solar panels based on CFD simulations[J]. Acta Energiae Solaris Sinica, 2016, 37(7): 1774-1779.
doi: 10.3969/j.issn.0254-0096.2016.07.024
[1] 郑明军, 赵晨磊, 吴文江, 杨摄. 全地形移动机器人车身结构分析与优化[J]. 工程设计学报, 2021, 28(2): 195-202.
[2] 周超, 秦瑞江, 芮晓明. 风载荷作用下V形绝缘子串的力学特性分析[J]. 工程设计学报, 2021, 28(1): 95-104.
[3] 胡俊峰,郝亚洲,徐贵阳. 基于有限元法的柔性铰链力学模型和性能分析[J]. 工程设计学报, 2014, 21(5): 432-438.
[4] 律辉,王优强,刘昺丽,卢宪玖. 不同板条形状对艉轴承的力学性能影响研究及其结构优化[J]. 工程设计学报, 2014, 21(3): 292-300.
[5] 陈宝,陈茜,Christian Lohse,雷刚. 基于“双法多程式”的悬架橡胶衬套力学性能估算与试验验证[J]. 工程设计学报, 2014, 21(1): 43-50.
[6] 谭兴强, 贾舒媛, 谢志江. 6_PUS并联机器人动力学性能参数优化设计[J]. 工程设计学报, 2013, 20(6): 470-475.
[7] 方水光, 邵丹璐, 金英连, 王斌锐. 柔性仿人机械臂设计与动力学仿真[J]. 工程设计学报, 2012, 19(4): 307-311.
[8] 彭晋民, 罗敏峰. 水润滑塑料合金轴承设计参数实验分析及优化[J]. 工程设计学报, 2010, 17(3): 196-200.