Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (4): 463-473    DOI: 10.3785/j.issn.1006-754X.2025.04.187
机器人与机构设计     
履带车辆双输入双输出耦合机构拓扑综合研究
邢庆坤1,2(),杨双愿3,秦大同1,李学良3(),彭增雄4
1.重庆大学 高端装备机械传动全国重点实验室,重庆 400044
2.中国北方车辆研究所 车辆传动重点实验室,北京 100072
3.燕山大学 特种运载装备河北省重点实验室,河北 秦皇岛 066004
4.北京理工大学 车辆传动重点实验室,北京 100081
Topology synthesis research of dual-input-dual-output coupling mechanism for tracked vehicle
Qingkun XING1,2(),Shuangyuan YANG3,Datong QIN1,Xueliang LI3(),Zengxiong PENG4
1.State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, China
2.Key Laboratory of Vehicle Transmission, China North Vehicle Research Institute, Beijing 100072, China
3.Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao 066004, China
4.Key Laboratory of Vehicle Transmission, Beijing Institute of Technology, Beijing 100081, China
 全文: PDF(3551 KB)   HTML
摘要:

为了降低大功率混合动力履带车辆传动系统驱动电机的功率需求,提出了基于转向功率回流特性的双侧电机耦合机构创新设计方法。以两行星排和三行星排构型为研究对象,建立了融合运动学与动力学约束的拓扑图论模型,将履带车辆直驶-转向协同工况下的功率回流特征转化为构型参数的数学判据;通过拓扑综合与参数化分析筛选出6种可行构型,结合转向再生功率传递条件进行多目标性能评估,发现两行星排构型在耦合机构效率和转向再生功率利用率方面表现最优;搭建了履带车辆机电耦合动力学仿真模型,进行了车辆直驶动力性和转向能力测试,结果表明:优选构型可实现偏航角跟踪精度大于94%、纵向速度误差小于2.1%的协同控制。研究结果为高功率密度混合动力履带车辆传动系统的设计提供了新的技术路径。

关键词: 履带车辆功率耦合机构数学特征构型拓扑综合    
Abstract:

In order to decrease the power demand of drive motors in the transmission systems of high-power hybrid tracked vehicles, an innovative design method for a bilateral motor coupling mechanism based on the steering power reflux characteristic was proposed. Taking the dual-planet and triple-planet gear configurations as the research objects, a topological graph theoretical model incorporating kinematic and dynamics constraints was established. The power reflux characteristics under the straight-line driving and steering coordinated condition were transformed into the mathematical criteria for configuration parameters. Using topological synthesis and parametric analysis, six viable configurations were selected. Combined with the steering regenerative power transmission conditions, a multi-objective performance evaluation was conducted, and it was found that the dual-planet gear configuration attained the best in terms of coupling mechanism efficiency and steering power regenerative utilization rate. A electromechanical coupling dynamics simulation model for tracked vehicle was established, and tests on the vehicle's straight-line driving power performance and steering capability were conducted. The results showed that the optimal configuration could achieve a coordinated control with a yaw angle tracking accuracy of over 94% and a longitudinal speed error of less than 2.1%. The research results have provided a novel technical approach for the design of high-power-density hybrid tracked vehicle transmission system.

Key words: tracked vehicle    power coupling mechanism    mathematical features    configuration topology synthesis
收稿日期: 2025-01-02 出版日期: 2025-09-01
CLC:  TH 112  
基金资助: 国家自然科学基金资助项目(52102429);国家自然科学基金资助项目(52375040);河北省高等学校科学研究青年基金项目(QN2021137)
通讯作者: 李学良     E-mail: xingqingkun@163.com;lixl@ysu.edu.cn
作者简介: 邢庆坤(1983—),男,副研究员,博士,从事车辆传动系统研究,E-mail: xingqingkun@163.com, http://orcid.org/0009-0008-5448-2304
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邢庆坤
杨双愿
秦大同
李学良
彭增雄

引用本文:

邢庆坤,杨双愿,秦大同,李学良,彭增雄. 履带车辆双输入双输出耦合机构拓扑综合研究[J]. 工程设计学报, 2025, 32(4): 463-473.

Qingkun XING,Shuangyuan YANG,Datong QIN,Xueliang LI,Zengxiong PENG. Topology synthesis research of dual-input-dual-output coupling mechanism for tracked vehicle[J]. Chinese Journal of Engineering Design, 2025, 32(4): 463-473.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.187        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/463

图1  机电复合传动示意图
元件图论模型
表1  行星排元件基于拓扑关系的图论表示
图2  两行星排拓扑构型
图3  两行星排拓扑方案
图4  两行星排构型1下的传动方案
图5  两行星排构型2下的传动方案
图6  三行星排拓扑构型
图7  fw=2时三行星排拓扑方案
图8  fw=3时三行星排拓扑方案
图9  fw=2时三行星排连接方式
图10  图9(a)对应的传动方案
图11  图9(d)、图9(e)对应的传动方案
图12  fw=3时三行星排连接方式
参数数值
车的质量/kg45 000
履带中心距/m2.71
履带接地长度/m4.472
滚动阻力系数0.05
最大转向阻力系数0.6
最大车速/(km/h)70
表2  履带车辆模型参数
图13  两行星排特征参数对传动性能的影响
图14  三行星排特征参数对传动性能的影响
图15  直线行驶时传动系统的功率流向
图16  中心转向时传动系统的功率流向
图17  单边转向时传动系统的功率流向unilateral steering
图18  电机驱动转向时传动系统的功率流向
图19  履带车辆动力学仿真模型
类型参数数值
发动机参数最大功率/kW769.31
最大转矩/(Nm)1 750
最大转速/(r/min)4 200
惯性常数/(kg/m2)2
ISG参数最大功率/kW550
最大转矩/(Nm)700
最大转速/(r/min)20 000
惯性常数/(kg/m2)0.5
驱动电机参数最大功率/kW250
最大转矩/(Nm)3 500
最大转速/(r/min)2 500
惯性常数/(kg/m2)4
传动系统参数K12.478
K22.478
K32.135
K42
K52
K62
K72.135
K82.478
i11
i28.5
车辆参数空载质量/kg35 000
车轮半径/m0.318
摩擦阻力系数0.06
空气阻力系数0.9
迎风面积/m26
表3  履带车辆动力学仿真模型参数
图20  直驶循环测试工况下车辆速度
图21  直驶循环测试工况下驱动电机输出扭矩
图22  直驶与转向复合测试工况下车辆偏航角
图23  直驶与转向复合测试工况下车辆纵向速度
图24  直驶与转向复合测试工况下驱动电机输出扭矩
[1] 陈兵, 马凯璇, 刘洋, 等. 双电机驱动履带车辆直驶稳定性分层控制策略[J]. 吉林大学学报(工学版), 2023, 53(10): 2752-2760.
CHEN B, MA K X, LIU Y, et al. Straight driving stability hierarchical control for dual-motor driving electric tracked vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(10): 2752-2760.
[2] 张杰, 袁东, 张朋, 等. 双侧电传动履带车辆模糊前馈-反馈转向控制[J]. 兵工学报, 2020, 41(8): 1688-1696.
ZHANG J, YUAN D, ZHANG P, et al. Steering control based on fuzzy feedforward and feedback for dual-motor electric drive tracked vehicle[J]. Acta Armamentarii, 2020, 41(8): 1688-1696.
[3] 魏巍, 闫清东, 刘城, 等. 装甲车辆设计[M]. 2版. 北京: 北京理工大学出版社, 2022.
WEI W, YAN Q D, LIU C, et al. Design of armored vehicles [M]. 2th ed. Beijing: Beijing Institute of Technology Press, 2022.
[4] 生辉, 项昌乐, 盖江涛, 等. 双侧电机耦合驱动履带车辆单侧电机故障模式下车辆安全控制[J]. 兵工学报, 2023, 44(11): 3498-3507.
SHENG H, XIANG C L, GAI J T, et al. Vehicle safety control of tracked vehicle driven by two-sided motor coupling under the failure mode of one-sided motor[J]. Acta Armamentarii, 2023, 44(11): 3498-3507.
[5] ARNAUDOV K, KARAIVANOV D. Alternative method for analysis of complex compound planetary gear trains: essence and possibilities[C]//Power Transmissions: Proceedings of the 4th International Conference. Sinaia, Romania, June 20-23, 2012.
[6] CHEN H, CHEN X A. A new methodology for multistage multispeed planetary transmission design based on geometry[J]. Journal of Mechanical Design, 2021, 143(11): 113401.
[7] DENG T, TANG P, SU Z H, et al. Systematic design and optimization method of multimode hybrid electric vehicles based on equivalent tree graph[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13465-13474.
[8] GENG M J, DING H F, KE T, et al. Topological graph representation and configuration synthesis for power-split hybrid transmissions of multi-planetary gear trains[J]. Journal of Mechanical Design, 2023, 145(12): 123401.
[9] GAO M F, HU J B. Kinematic analysis of planetary gear trains based on topology[J]. Journal of Mechanical Design, 2018, 140(1): 012302.
[10] 高明飞, 胡纪滨, 李学良, 等. 履带车辆传动机构实现转向再生功率传递的构型特征研究[J]. 机械工程学报, 2019, 55(24): 137-144. doi:10.3901/jme.2019.24.137
GAO M F, HU J B, LI X L, et al. Study on the characteristics of configuration for the transmission of tracked vehicles to achieve the transfer of steering regenerative power[J]. Journal of Mechanical Engineering, 2019, 55(24): 137-144.
doi: 10.3901/jme.2019.24.137
[11] YANG X D, SHAO Y M, WANG L M, et al. Configuration design of dual-input compound power-split mechanism for in-wheel motor-driven electrical vehicles based on an improved lever analogy method[J]. Journal of Mechanical Design, 2021, 143(10): 104501.
[12] KIM H, KUM D. Comprehensive design methodology of input- and output-split hybrid electric vehicles: in search of optimal configuration[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2912-2923.
[13] BARHOUMI T, KIM H, KUM D. Automatic generation of design space conversion maps and its application for the design of compound split hybrid powertrains[J]. Journal of Mechanical Design, 2018, 140(6): 063401.
[14] SONG C, HWANG J, KUM D. Efficient design space exploration of multi-mode, two-planetary-gear, power-split hybrid electric powertrains via virtual levers[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(4): 3498-3509.
[15] BARHOUMI T, KUM D. Designing a super-fast prius: systematic design of multispeed eCVT via virtual design space[J]. IEEE Transactions on Transportation Electrification, 2024, 10(1): 263-276.
[16] 胡建军, 薛首志, 刘子睿. 一种履带车辆三行星排混合动力系统构型优化设计方案[J]. 中国公路学报, 2024, 37(7): 317-328.
HU J J, XUE S Z, LIU Z R. Optimization design for a hybrid electric powertrain system with three-planetary gear sets of tracked vehicles[J]. China Journal of Highway and Transport, 2024, 37(7): 317-328.
[17] 秦兆博. 混合动力履带车辆机电复合传动系统优化设计方法[D]. 北京: 清华大学, 2018: 46-47. doi:10.1115/1.4039687
QIN Z B. Optimal design methodology of the electro-mechanical transmission system for hybrid tracked vehicles [D]. Beijing: Tsinghua University, 2018: 46-47,
doi: 10.1115/1.4039687
[18] LI R, FAN J J, HAN Z D, et al. Configuration design and control of hybrid tracked vehicle with three planetary gear sets[J]. Journal of Central South University, 2021, 28(7): 2105-2119.
[19] PENG H, QIN D T, HU J J, et al. Synthesis and analysis method for powertrain configuration of single motor hybrid electric vehicle[J]. Mechanism and Machine Theory, 2020, 146: 103731.
[20] 韩政达, 毛明, 马晓枫, 等. 履带车辆机电复合传动耦合机构数学特征的研究[J]. 车辆与动力技术, 2012(1): 1-2, 12.
HAN Z D, MAO M, MA X F, et al. Research on mathematical characteristics of coupling mechanism for electro-mechanical transmission tracked vehicle[J]. Vehicle & Power Technology, 2012(1): 1-2, 12.
[1] 刘 喆,陶凤和,贾长治. 履带车辆传动轴疲劳寿命预测与结构改进[J]. 工程设计学报, 2015, 22(5): 431-437.