机器人与机构设计 |
|
|
|
|
尺寸无关参数对三浦折纸结构稳态特性的影响研究 |
王家梁( ),舒申,楚凯,张宇,周浩,胡俊峰( ) |
江西理工大学 机电工程学院,江西 赣州 341000 |
|
Study on influence of size-independent parameters on steady-state characteristics of Miura origami structure |
Jialiang WANG( ),Shen SHU,Kai CHU,Yu ZHANG,Hao ZHOU,Junfeng HU( ) |
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China |
引用本文:
王家梁,舒申,楚凯,张宇,周浩,胡俊峰. 尺寸无关参数对三浦折纸结构稳态特性的影响研究[J]. 工程设计学报, 2025, 32(4): 452-462.
Jialiang WANG,Shen SHU,Kai CHU,Yu ZHANG,Hao ZHOU,Junfeng HU. Study on influence of size-independent parameters on steady-state characteristics of Miura origami structure[J]. Chinese Journal of Engineering Design, 2025, 32(4): 452-462.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.163
或
https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/452
|
[15] |
WANG H R, SHEN X J, WANG Z H, et al. Study on folding stability of origami metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2726-2732.
|
[16] |
SILVERBERG J L, NA J H, EVANS A A, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom[J]. Nature Materials, 2015, 14(4): 389-393.
|
[17] |
邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性[J]. 力学学报, 2019, 51(4): 1110-1121. QIU H, FANG H B, XU J. Nonlinear dynamical characteristics of a multi-stable series origami structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121.
|
[18] |
WANG Y B, LIU K. Shape optimization of non-rigid origami leading to emerging bistability[J]. Mechanics Research Communications, 2023, 132: 104165.
|
[19] |
FABER J A, ARRIETA A F, STUDART A R. Bioinspired spring origami[J]. Science, 2018, 359(6382): 1386-1391.
|
[20] |
FLORES J, STEIN-MONTALVO L, ADRIAENSSENS S. Effect of crease curvature on the bistability of the origami Waterbomb base[J]. Extreme Mechanics Letters, 2022, 57: 101909.
|
[21] |
GUO K X, LIU M C, VELLA D, et al. Dehydration-induced corrugated folding in Rhapis excelsa plant leaves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(17): e2320259121.
|
[1] |
冯慧娟, 杨名远, 姚国强, 等. 折纸机器人[J]. 中国科学: 技术科学, 2018, 48(12): 1259-1274. doi:10.1360/n092018-00213 FENG H J, YANG M Y, YAO G Q, et al. Origami robots[J]. Scientia Sinica (Technologica), 2018, 48(12): 1259-1274.
doi: 10.1360/n092018-00213
|
[2] |
SADEGHI S, ALLISON S R, BESTILL B, et al. TMP origami jumping mechanism with nonlinear stiffness[J]. Smart Materials and Structures, 2021, 30(6): 065002.
|
[3] |
WANG C L, GUO H W, LIU R Q, et al. A kirigami-inspired metamorphic double-loop linkage with multiple single-degree-of-freedom reconfiguration branches[J]. Journal of Mechanical Design, 2023, 145(7): 073301.
|
[22] |
FANG H B, LI S Y, JI H M, et al. Uncovering the deformation mechanisms of origami metamaterials by introducing generic degree-four vertices[J]. Physical Review E, 2016, 94(4): 043002.
|
[4] |
SALAZAR R, MURTHY S, PELLAZAR C, et al. TransFormers for lunar extreme environments: large origami deployable solar reflectors[C]//2017 IEEE Aerospace Conference. Big Sky, MT, Mar. 4-11, 2017.
|
[5] |
HUANG X H, LIU L S, LIN Y H, et al. High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures[J]. Science Advances, 2023, 9(34): eadh9799.
|
[6] |
LIU Q K, WANG W, REYNOLDS M F, et al. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics[J]. Science Robotics, 2021, 6(52): eabe6663.
|
[7] |
KIM S J, LEE D Y, JUNG G P, et al. An origami-inspired, self-locking robotic arm that can be folded flat[J]. Science Robotics, 2018, 3(16): eaar2915.
|
[8] |
FANG H B, CHU S A, XIA Y T, et al. Programmable self-locking origami mechanical metamaterials[J]. Advanced Materials, 2018, 30(15): 1706311.
|
[9] |
HAN H B, SOROKIN V, TANG L H, et al. Lightweight origami isolators with deployable mechanism and quasi-zero-stiffness property[J]. Aerospace Science & Technology, 2022, 121: 107319.
|
[10] |
WU H P, FANG H B, CHEN L F, et al. Transient dynamics of a miura-origami tube during free deployment[J]. Physical Review Applied, 2020, 14(3): 034068.
|
[11] |
CHI Y D, LI Y B, ZHAO Y, et al. Bistable and multistable actuators for soft robots: structures, materials, and functionalities[J]. Advanced Materials, 2022, 34(19): 2110384.
|
[12] |
ZHOU X, ZANG S X, YOU Z. Origami mechanical metamaterials based on the Miura-derivative fold patterns[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2191): 20160361.
|
[13] |
WEI S Z, GHOSH T K. Bioinspired bistable dielectric elastomer actuators: programmable shapes and application as binary valves[J]. Soft Robotics, 2022, 9(5): 900-906.
|
[14] |
LASCHI C, MAZZOLAI B, CIANCHETTI M. Soft robotics: technologies and systems pushing the boundaries of robot abilities[J]. Science Robotics, 2016, 1(1): eaah3690.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|