机器人与机构设计 |
|
|
|
|
阀厅钢结构清扫机器人设计 |
汪旭旭1,2( ),郑涵钰1,姚斌1,2,杜轩1( ),李响1 |
1.三峡大学 机械与动力学院,湖北 宜昌 443002 2.国家电网有限公司特高压建设分公司,北京 100032 |
|
Design of cleaning robot for steel structure in valve hall |
Xuxu WANG1,2( ),Hanyu ZHENG1,Bin YAO1,2,Xuan DU1( ),Xiang LI1 |
1.College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, China 2.State Grid UHV Engineering Construction Company, Beijing 100032, China |
引用本文:
汪旭旭,郑涵钰,姚斌,杜轩,李响. 阀厅钢结构清扫机器人设计[J]. 工程设计学报, 2025, 32(4): 438-451.
Xuxu WANG,Hanyu ZHENG,Bin YAO,Xuan DU,Xiang LI. Design of cleaning robot for steel structure in valve hall[J]. Chinese Journal of Engineering Design, 2025, 32(4): 438-451.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.05.109
或
https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/438
|
[1] |
刘泽洪, 郭贤珊, 乐波, 等. ±1 100 kV/12 000 MW特高压直流输电工程成套设计研究[J]. 电网技术, 2018, 42(4): 1023-1031. LIU Z H, GUO X S, YUE B, et al. System design of ±1 100 kV/12 000 MW UHVDC transmission project[J]. Power System Technology, 2018, 42(4): 1023-1031.
|
[2] |
黄山, 吴振升, 任志刚, 等. 电力智能巡检机器人研究综述[J]. 电测与仪表, 2020, 57(2): 26-38. HUANG S, WU Z S, REN Z G, et al. Review of electric power intelligent inspection robot[J]. Electrical Measurement & Instrumentation, 2020, 57(2): 26-38.
|
[3] |
郝艳捧, 梁苇, 潘锐健, 等. 输电线路智能带电检修关键技术研究综述[J]. 电力自动化设备, 2022, 42(2): 163-175. HAO Y P, LIANG W, PAN R J, et al. Review on intelligent live-line maintenance technology applied on power transmission lines[J]. Electric Power Automation Equipment, 2022, 42(2): 163-175.
|
[4] |
王宏伟, 刘亚东, 田兵, 等. 基于空间关系的变电站巡检机器人巡检点自主生成方法[J]. 高电压技术, 2022, 48(8): 2982-2990. WANG H W, LIU Y D, TIAN B, et al. Autonomous generation method of substation inspection robot inspection point based on spatial relationship[J]. High Voltage Engineering, 2022, 48(8): 2982-2990.
|
[5] |
连兴文, 吕涛, 袁宜升, 等. 阀厅智能巡检机器人运动控制系统[J]. 自动化与仪器仪表, 2022(12): 236-239, 254. LIAN X W, LÜ T, YUAN Y S, et al. Intelligent inspection robot motion control system for valve hall[J]. Automation & Instrumentation, 2022(12): 236-239, 254.
|
[6] |
叶日新, 赵新志, 窦小晶, 等. 基于红外测温技术的±500 kV换流站平波电抗器套管缺陷诊断分析与处理[J]. 电网与清洁能源, 2021, 37(7): 65-72. YE R X, ZHAO X Z, DOU X J, et al. Research and treatment on the smoothing reactor bushing defect of the ±500 kV converter station based on infrared temperature measurement technology[J]. Power System and Clean Energy, 2021, 37(7): 65-72.
|
[7] |
温祥青. 换流阀厅壁面清洁机器人的控制系统设计与研究[D]. 杭州: 浙江工业大学, 2017. WEN X Q. Control system design and research of cleaning robot for the wall of the converter valve hall[D]. Hangzhou: Zhejiang University of Technology, 2017.
|
[8] |
焦义康, 刘志远, 潘烨, 等. 换流站阀厅内壁清洁机器人的设计[J]. 机电工程, 2018, 35(7): 735-739. JIAO Y K, LIU Z Y, PAN Y, et al. Design of cleaning robot for inner wall of converter station valve hall[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(7): 735-739.
|
[9] |
KLEMM V, MORRA A, SALZMANN C, et al. Ascento: a two-wheeled jumping robot[C]//2019 International Conference on Robotics and Automation. Montreal, QC, May 20-24, 2019.
|
[10] |
MUTHUGALA M A V J, SAMARAKOON S M B P, ELARA M R. Design by robot: a human-robot collaborative framework for improving productivity of a floor cleaning robot[C]//2022 International Conference on Robotics and Automation. Philadelphia, PA, May 23-27, 2022.
|
[11] |
汪兴潮. 船舶除锈爬壁机器人技术研究[D]. 广州: 华南理工大学, 2016. WANG X C. The study of wall climbing robot for removal rust in vessels[D]. Guangzhou: South China University of Technology, 2016.
|
[12] |
张栋, 杨培, 黄哲轩, 等. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341. ZHANG D, YANG P, HUANG Z X, et al. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
|
[13] |
张小俊, 吴亚淇, 刘昊学, 等. 轮足式磁吸附越障爬壁机器人设计与分析[J]. 机械工程学报, 2024, 60(1): 248-261. doi:10.3901/jme.2024.01.248 ZHANG X J, WU Y Q, LIU H X, et al. Design and analysis of wheel-footed magnetic adsorption wall-climbing robot with passing obstacles capability[J]. Journal of Mechanical Engineering, 2024, 60(1): 248-261.
doi: 10.3901/jme.2024.01.248
|
[14] |
周敬淞, 张军, 肖毅, 等. 基于仿蟹刚柔耦合机构的搜救机器人设计[J]. 仪器仪表学报, 2023, 44(6): 11-20. ZHOU J S, ZHANG J, XIAO Y, et al. Design of a search and rescue robot with crab-inspired rigid-flexible coupling mechanisms[J]. Chinese Journal of Scientific Instrument, 2023, 44(6): 11-20.
|
[15] |
樊继壮, 仇裕龙, 张伟, 等. 仿青蛙游动机器人机构设计[J]. 机器人, 2015, 37(2): 168-175, 187. FAN J Z, QIU Y L, ZHANG W, et al. Mechanical design of frog inspired swimming robot[J]. Robot, 2015, 37(2): 168-175, 187.
|
[16] |
吴其林, 赵韩, 陈晓飞, 等. 多臂协作机器人技术与应用现状及发展趋势[J]. 机械工程学报, 2023, 59(15): 1-16. doi:10.3901/jme.2023.15.001 WU Q L, ZHAO H, CHEN X F, et al. Review of technology, application status and development trend in multi-arm cooperative robots[J]. Journal of Mechanical Engineering, 2023, 59(15): 1-16.
doi: 10.3901/jme.2023.15.001
|
[17] |
陈永灿, 陈嘉杰, 王皓冉, 等. 大直径长引水隧洞水下检测机器人系统关键技术[J]. 清华大学学报(自然科学版), 2023, 63(7): 1015-1031. CHEN Y C, CHEN J J, WANH H R, et al. Key technology of underwater inspection robot system for large diameter and long headrace tunnel[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(7): 1015-1031.
|
[18] |
CHU Y C, WANG X H, HAO T C, et al. Design and performance study of a six-bar mechanism underwater robot based on cownose ray bionics[J]. Journal of Marine Science and Engineering, 2025, 13(6): 1156.
|
[19] |
杜轩, 李宝万, 方子帆. 基于公理设计和多色集合的树障清除机器人方案设计[J]. 计算机集成制造系统, 2022, 28(9): 2782-2793. DU X, LI B W, FANG Z F. Scheme design of tree barrier removal robot based on axiomatic design and polychromatic set[J]. Computer Integrated Manufacturing Systems, 2022, 28(9): 2782-2793.
|
[20] |
王建磊, 门川皓, 崔亚辉, 等. 基于公理设计的静压滑动轴承设计软件开发研究[J]. 机械设计与研究, 2020, 36(5): 89-95. WANG J L, MEN C H, CUI Y H, et al. Development research of bearing design software based on axiomatic design[J]. Machine Design & Research, 2020, 36(5): 89-95.
|
[21] |
杨得玉, 徐志刚, 朱建峰, 等. 基于公理设计和多色集合的拆卸设备方案设计[J]. 计算机集成制造系统, 2019, 25(10): 2476-2486. YANG D Y, XU Z G, ZHU J F, et al. Design of dismantling equipment scheme based on axiomatic design and polychromatic sets[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2476-2486.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|