[1] |
王兆魁, 孟庆良, 刘纯武. 智能人机交互在有人太空探索中的应用与展望[J]. 上海航天(中英文), 2024, 41(1): 1-10. WANG Z K, MENG Q L, LIU C W. Application and prospect of intelligent human-robot interaction in manned space exploration[J]. Aerospace Shanghai(Chinese & English), 2024, 41(1): 1-10.
|
[2] |
柏林. 浅谈防爆机器人的发展之路[J]. 中国安防, 2021(4): 86-88. BAI L. An overview of the development path of explosion-proof robots[J]. China Security & Protection, 2021(4): 86-88.
|
[3] |
李明龙, 杨文婧, 易晓东, 等. 面向灾难搜索救援场景的空地协同无人群体任务规划研究[J]. 机械工程学报, 2019, 55(11): 1-9. doi:10.3901/jme.2019.11.001 LI M L, YANG W J, YI X D, et al. Swarm robot task planning based on air and ground coordination for disaster search and rescue[J]. Journal of Mechanical Engineering, 2019, 55(11): 1-9.
doi: 10.3901/jme.2019.11.001
|
[4] |
OH J W, JUNG J Y, KIM H W, et al. Gap size effect on the tribological characteristics of the roller for deep-sea mining robot[J]. Marine Georesources & Geotechnology, 2017, 35(1): 120-126.
|
[5] |
王晓芸, 崔培, 陈晓. 轮式移动机器人文献综述[J]. 石家庄铁路职业技术学院学报, 2019, 18(2): 66-70. WANG X Y, CUI P, CHEN X. Literature review of wheeled mobile robot[J]. Journal of Shijiazhuang Institute of Railway Technology, 2019, 18(2): 66-70.
|
[6] |
郝呈晔. 新型变形轮腿式移动机器人的设计分析与实验研究[D]. 天津: 天津大学, 2021. HAO C Y. Design, analysis and experimental study of a new-type transformable wheel-legged mobile robot[D]. Tianjin: Tianjin University, 2021.
|
[7] |
孙海燕, 宗成国. 履带式移动机器人技术研究[J]. 电子质量, 2023(4): 10-12. SUN H Y, ZONG C G. Research on tracked mobile robot technology[J]. Electronics Quality, 2023(4): 10-12.
|
[8] |
田舒. 车身可变形两轮移动机构的设计与移动性能研究[D]. 北京: 北京交通大学, 2020. TIAN S. Research on the design and moving performance of the deformable two-wheel moving mechanism of the car body[D]. Beijing: Beijing Jiaotong University, 2020.
|
[9] |
马云. 地面机器人轮腿式移动机构与行走规划[D]. 哈尔滨: 哈尔滨工业大学, 2022. MA Y. Wheel-legged mobile mechanism and walking planning of ground robot[D]. Harbin: Harbin Institute of Technology, 2022.
|
[10] |
TADAKUMA K, TAKANE E, FUJITA M, et al. Planar omnidirectional crawler mobile mechanism: development of actual mechanical prototype and basic experiments[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 395-402.
|
[11] |
TAKANE E, TADAKUMA K, WATANABE M, et al. Design and control method of a planar omnidirectional crawler mechanism[J]. Journal of Mechanical Design, 2022, 144(1): 013302.
|
[12] |
高赵成. 可重构摆臂式履带机器人机构设计与对接技术研究[D]. 西安: 长安大学, 2023. GAO Z C. Research on the design and docking technology of reconfigurable swing arm crawler robot[D]. Xi'an: Chang'an University, 2023.
|
[13] |
崔玉宁, 罗自荣, 尚建忠, 等. 多运动态可重构轮履复合式机器人机械设计[J]. 哈尔滨工业大学学报, 2018, 50(7): 80-86. CUI Y N, LUO Z R, SHANG J Z, et al. Machine design of a reconfigurable wheel-track hybrid mobile robot with multi-locomotion[J]. Journal of Harbin Institute of Technology, 2018, 50(7): 80-86.
|
[14] |
陈长征, 项宏伟, 杨孔硕, 等. 可变形履带机器人跨越台阶的动力学分析[J]. 沈阳工业大学学报, 2015, 37(2): 165-170. CHEN C Z, XIANG H W, YANG K S, et al. Dynamic analysis for variable tracked robot in process of climbing steps[J]. Journal of Shenyang University of Technology, 2015, 37(2): 165-170.
|
[15] |
姚燕安, 王硕, 成俊霖. 多模式自适应差动履带机器人[J]. 南京航空航天大学学报, 2017, 49(6): 757-765. YAO Y A, WANG S, CHENG J L. Multimode adaptable differential tracked mobile robot[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(6): 757-765.
|
[16] |
YAMAUCHI B M. PackBot: a versatile platform for military robotics[C]//Proceedings Volume 5422, Unmanned Ground Vehicle Technology VI. Orlando, Florida, Apr. 12-16, 2004.
|
[17] |
MICHAUD F, LÉTOURNEAU D, ARSENAULT M, et al. AZIMUT, a leg-track-wheel robot[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, NV, Oct. 27-31, 2003.
|
[18] |
赵希庆, 尚建忠, 罗自荣, 等. 四连杆变形履带式机器人的越障性能分析[J]. 机械设计与研究, 2009, 25(6): 36-39. ZHAO X Q, SHANG J Z, LUO Z R, et al. Analysis on the performance of obstacle surmounting for deformable tracked robot with four links[J]. Machine Design & Research, 2009, 25(6): 36-39.
|
[19] |
李琳, 李超宇, 杨冰冰. 基于行星轮机构履带式煤矿侦察机器人越障性能分析[J]. 煤炭技术, 2018, 37(11): 289-292. LI L, LI C Y, YANG B B. Crossing obstacles performance analysis of crawler coal mine reconnaissance robot based on planetary gear mechanism[J]. Coal Technology, 2018, 37(11): 289-292.
|
[20] |
安治国, 周志鸿. 带辅助轮摆臂的履带式机器人越障能力分析[J]. 山东科技大学学报(自然科学版), 2024, 43(2): 121-132. AN Z G, ZHOU Z H. Analysis of obstacle-crossing ability of swing arm tracked robot with auxiliary wheels[J]. Journal of Shandong University of Science and Technology (Natural Science), 2024, 43(2): 121-132.
|
[21] |
孙海燕, 宗成国. 可变形履带式移动机器人设计分析[J]. 电子质量, 2023(5): 40-43. SUN H Y, ZONG C G. Design and analysis of deformable tracked mobile robot[J]. Electronics Quality, 2023(5): 40-43.
|
[22] |
张小俊, 张明路, 张建华, 等. 基于欠驱动原理的变形连杆履带机构设计[J]. 机械设计, 2018, 35(3): 43-48. ZHANG X J, ZHANG M L, ZHANG J H, et al. Deformation and connecting rod mechanism design based on underactuation principle[J]. Journal of Machine Design, 2018, 35(3): 43-48.
|
[23] |
陈广庆, 沈灵斌. 模块化欠驱动行星履带机器人设计[J]. 煤矿机械, 2020, 41(8): 1-3. CHEN G Q, SHEN L B. Design of modular underactuated planetary crawler robot[J]. Coal Mine Machinery, 2020, 41(8): 1-3.
|
[24] |
孙军权. 自适应行星轮式履带机器人的研究[D]. 北京: 北京交通大学, 2019. SUN J Q. Research on adaptive planetary wheeled crawler robot[D]. Beijing: Beijing Jiaotong University, 2019.
|
[25] |
周筑宝. 最小耗能原理及其应用: 材料的破坏理论、本构关系理论及变分原理[M]. 北京: 科学出版社, 2001. ZHOU Z B. Principle of minimum energy consumption and its applications: material failure theory, constitutive relation theory and variational principle[M]. Beijing: Science Press, 2001.
|