Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (4): 474-487    DOI: 10.3785/j.issn.1006-754X.2025.04.148
机器人与机构设计     
行星式欠驱动可变形履带移动机构的设计与分析
张娜1(),荀致远2,姚燕安3()
1.北京科技职业大学 航空工程学院,北京 100176
2.暨南大学 信息科学技术学院,广东 广州 510632
3.北京交通大学 机械与电子控制工程学院,北京 100044
Design and analysis of planetary underactuated transformable tracked mobile mechanism
Na ZHANG1(),Zhiyuan XUN2,Yan'an YAO3()
1.School of Aeronautical Engineering, Beijing Polytechnic University, Beijing 100176, China
2.College of Information Science and Technology, Jinan University, Guangzhou 510632, China
3.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF(5264 KB)   HTML
摘要:

为提高传统履带移动机构的越障能力和环境适应能力,提出了一种行星式欠驱动可变形履带移动机构,其由履带驱动轮系和行星轮系构成,具有直臂模式、正交模式和过渡模式三种运动模式。该履带移动机构采用欠驱动方式,根据最小耗能原理实现快速响应的越障功能。首先,对履带移动机构进行运动学分析,得到了3种运动模式下履带移动机构的质心高度、接地面积与履带变形的关系,并分析了其适用环境。然后,建立了履带移动机构的动力学理论模型并计算了其可跨越的最大沟槽宽度和可翻越的最大凸台高度,同时分析了履带移动机构变形与越障所需驱动扭矩之间的关系。接着,基于履带移动机构的动力学仿真模型开展越障仿真分析,得到了其越障仿真过程及驱动扭矩变化曲线。最后,搭建了履带移动机构的原理样机并开展了相关实验,验证了其结构设计的可行性。结果表明,所设计的行星式欠驱动可变形履带移动机构可通过控制自身变形实现快速越障和适应复杂地形的功能,显著提高了履带移动机构的越障能力和环境适应能力。

关键词: 履带移动机构欠驱动履带变形最小耗能原理    
Abstract:

To enhance the obstacle-crossing ability and environmental adaptability of conventional tracked mobile mechanisms, a planetary underactuated transformable tracked mobile mechanism is proposed, which is composed of a tracked driving wheel train and a planetary gear train, and has three motion modes: straight arm mode, orthogonal mode and transition mode. This tracked mobile mechanism adopts underactuated pattern, and realizes rapid obstacle-crossing response based on the least energy consumption principle. Firstly, the kinematics analysis was conducted on the tracked mobile mechanism. The relationships among center-of-mass height, ground contact area and track deformation under three motion modes were obtained, and its applicable environment was analyzed. Then, a dynamics theoretical model of the tracked mobile mechanism was established, and its maximum trench-crossing width and maximum protrusion-surmounting height were calculated. Meanwhile, the relationship between the deformation of the tracked mobile mechanism and the driving torque required for obstacle crossing was analyzed. Next, based on the dynamics simulation model of the tracked mobile mechanism, the obstacle-crossing simulation analysis was carried out, and the obstacle-crossing simulation process and the driving torque variation curve were obtained. Finally, a principal prototype of the tracked mobile mechanism was built and relevant experiments were carried out to verify the feasibility of its structural design. The results show that the designed planetary underactuated transformable tracked mobile mechanism can achieve the functions of rapid obstacle-crossing and adaptation to complex terrains by controlling its own deformation, significantly improving the obstacle-crossing ability and environmental adaptability of the tracked mobile mechanisms.

Key words: tracked mobile mechanism    underactuated    track deformation    least energy consumption principle
收稿日期: 2024-06-11 出版日期: 2025-09-01
CLC:  TH 112  
通讯作者: 姚燕安     E-mail: znizn@sina.com;yayao@bjtu.edu.cn
作者简介: 张 娜(1976—),女,副教授,硕士,从事机械设计与制造研究,E-mail: znizn@sina.com,https://orcid.org/0009-0001-6565-406X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张娜
荀致远
姚燕安

引用本文:

张娜,荀致远,姚燕安. 行星式欠驱动可变形履带移动机构的设计与分析[J]. 工程设计学报, 2025, 32(4): 474-487.

Na ZHANG,Zhiyuan XUN,Yan'an YAO. Design and analysis of planetary underactuated transformable tracked mobile mechanism[J]. Chinese Journal of Engineering Design, 2025, 32(4): 474-487.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.148        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I4/474

图1  行星履带式整车模型
图2  行星式欠驱动可变形履带移动机构的构型1—从动轮;2—弹簧;3—侧板;4—主动轮;5—行星杆;6—同步带;7—行星轮;8—行星从动轮;9—履带;10—从动轴;11—行走驱动轴;12—行星轴;13—变形驱动轴;14—行星主动轮。
图3  履带移动机构运动模式示意
图4  过渡模式履带移动机构结构简图
参数名称参数符号算例值
行星杆转角/(°)α0~90
行星杆长度/mmlBD112
履带轮直径/mmd47.75
履带周长/mml600
履带宽度/mmw80
履带AB段长度/mmlABα相关
履带BC段长度/mmlBCα相关
从动轮间距/mmlACα相关
连线BCAC的夹角/(°)β0~30
表1  履带移动机构的尺寸参数及算例值
图5  直臂模式履带移动机构结构简图
图6  正交模式履带移动机构结构简图
图7  履带移动机构的质心高度和接地面积与行星杆转角的关系
图8  直臂模式履带移动机构受力示意图
图9  直臂模式履带移动机构跨越沟槽过程示意图
图10  正交模式履带移动机构翻越凸台过程示意图
图11  过渡模式履带移动机构跨越沟槽过程示意图
图12  过渡模式履带移动机构翻越凸台过程示意图
参数名称参数符号算例值
电机输出扭矩/(N·m)M
履带移动机构翻转扭矩/(N·m)M'
单个履带移动机构承受的重力/NG75
车体前后轴距/mml1292
凸台高度/mmH
沟槽宽度/mmL
行星轮传动比i0.636
车体对履带移动机构的推力/NFj (j=1, 2, 3)
履带与地面和障碍物的摩擦系数μ1μ20.7
行星轮B处履带受地面的支持力/NNj
从动轮C处履带受地面的支持力/NNj
履带受障碍物的支持力/NNj
行星轮D处履带受障碍物的支持力/NNj ′″
履带受地面的摩擦力/NRj
履带受障碍物的摩擦力/NRj、Rj ′″
履带对地面的牵引力/NFf j
履带对障碍物的牵引力/NFfj ″、Ffj ′″
履带模块的转动惯量/(kg·m2)J
侧板夹角(侧板与地面夹角)/(°)λ
行星杆夹角(行星杆与水平面夹角)/(°)λ
Nj ′与水平面夹角/(°)φ
Nj ′″与水平面夹角/(°)τ
表2  履带移动机构的运动参数及算例值
图13  直臂模式履带移动机构跨越沟槽时的受力分析
图14  直臂模式履带移动机构跨越沟槽时所需的驱动扭矩与侧板夹角的关系
图15  正交模式履带移动机构翻越凸台第一阶段的受力分析
图16  正交模式履带移动机构翻越凸台第一阶段所需的驱动扭矩与侧板夹角的关系
图17  正交模式履带移动机构翻越凸台第二阶段的受力分析
图18  正交模式履带移动机构翻越凸台第二阶段所需的驱动扭矩与行星杆夹角的关系
图19  过渡模式履带移动机构跨越沟槽分析简图
图20  过渡模式履带移动机构翻越凸台分析简图
图21  过渡模式履带移动机构越障宽度/高度与行星杆转角的关系
图22  直臂模式履带移动机构跨越沟槽仿真过程
图23  直臂模式履带移动机构跨越沟槽时的驱动扭矩
图24  正交模式履带移动机构翻越凸台仿真过程
图25  正交模式履带移动机构翻越凸台时的驱动扭矩
图26  过渡模式履带移动机构跨越沟槽仿真过程
图27  过渡模式履带移动机构翻越凸台仿真过程
图28  过渡模式履带移动机构越障时的驱动扭矩
图29  直臂模式履带移动机构跨越沟槽实验
图30  正交模式履带移动机构翻越凸台实验
图31  过渡模式履带移动机构翻越凸台实验
[1] 王兆魁, 孟庆良, 刘纯武. 智能人机交互在有人太空探索中的应用与展望[J]. 上海航天(中英文), 2024, 41(1): 1-10.
WANG Z K, MENG Q L, LIU C W. Application and prospect of intelligent human-robot interaction in manned space exploration[J]. Aerospace Shanghai(Chinese & English), 2024, 41(1): 1-10.
[2] 柏林. 浅谈防爆机器人的发展之路[J]. 中国安防, 2021(4): 86-88.
BAI L. An overview of the development path of explosion-proof robots[J]. China Security & Protection, 2021(4): 86-88.
[3] 李明龙, 杨文婧, 易晓东, 等. 面向灾难搜索救援场景的空地协同无人群体任务规划研究[J]. 机械工程学报, 2019, 55(11): 1-9. doi:10.3901/jme.2019.11.001
LI M L, YANG W J, YI X D, et al. Swarm robot task planning based on air and ground coordination for disaster search and rescue[J]. Journal of Mechanical Engineering, 2019, 55(11): 1-9.
doi: 10.3901/jme.2019.11.001
[4] OH J W, JUNG J Y, KIM H W, et al. Gap size effect on the tribological characteristics of the roller for deep-sea mining robot[J]. Marine Georesources & Geotechnology, 2017, 35(1): 120-126.
[5] 王晓芸, 崔培, 陈晓. 轮式移动机器人文献综述[J]. 石家庄铁路职业技术学院学报, 2019, 18(2): 66-70.
WANG X Y, CUI P, CHEN X. Literature review of wheeled mobile robot[J]. Journal of Shijiazhuang Institute of Railway Technology, 2019, 18(2): 66-70.
[6] 郝呈晔. 新型变形轮腿式移动机器人的设计分析与实验研究[D]. 天津: 天津大学, 2021.
HAO C Y. Design, analysis and experimental study of a new-type transformable wheel-legged mobile robot[D]. Tianjin: Tianjin University, 2021.
[7] 孙海燕, 宗成国. 履带式移动机器人技术研究[J]. 电子质量, 2023(4): 10-12.
SUN H Y, ZONG C G. Research on tracked mobile robot technology[J]. Electronics Quality, 2023(4): 10-12.
[8] 田舒. 车身可变形两轮移动机构的设计与移动性能研究[D]. 北京: 北京交通大学, 2020.
TIAN S. Research on the design and moving performance of the deformable two-wheel moving mechanism of the car body[D]. Beijing: Beijing Jiaotong University, 2020.
[9] 马云. 地面机器人轮腿式移动机构与行走规划[D]. 哈尔滨: 哈尔滨工业大学, 2022.
MA Y. Wheel-legged mobile mechanism and walking planning of ground robot[D]. Harbin: Harbin Institute of Technology, 2022.
[10] TADAKUMA K, TAKANE E, FUJITA M, et al. Planar omnidirectional crawler mobile mechanism: development of actual mechanical prototype and basic experiments[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 395-402.
[11] TAKANE E, TADAKUMA K, WATANABE M, et al. Design and control method of a planar omnidirectional crawler mechanism[J]. Journal of Mechanical Design, 2022, 144(1): 013302.
[12] 高赵成. 可重构摆臂式履带机器人机构设计与对接技术研究[D]. 西安: 长安大学, 2023.
GAO Z C. Research on the design and docking technology of reconfigurable swing arm crawler robot[D]. Xi'an: Chang'an University, 2023.
[13] 崔玉宁, 罗自荣, 尚建忠, 等. 多运动态可重构轮履复合式机器人机械设计[J]. 哈尔滨工业大学学报, 2018, 50(7): 80-86.
CUI Y N, LUO Z R, SHANG J Z, et al. Machine design of a reconfigurable wheel-track hybrid mobile robot with multi-locomotion[J]. Journal of Harbin Institute of Technology, 2018, 50(7): 80-86.
[14] 陈长征, 项宏伟, 杨孔硕, 等. 可变形履带机器人跨越台阶的动力学分析[J]. 沈阳工业大学学报, 2015, 37(2): 165-170.
CHEN C Z, XIANG H W, YANG K S, et al. Dynamic analysis for variable tracked robot in process of climbing steps[J]. Journal of Shenyang University of Technology, 2015, 37(2): 165-170.
[15] 姚燕安, 王硕, 成俊霖. 多模式自适应差动履带机器人[J]. 南京航空航天大学学报, 2017, 49(6): 757-765.
YAO Y A, WANG S, CHENG J L. Multimode adaptable differential tracked mobile robot[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(6): 757-765.
[16] YAMAUCHI B M. PackBot: a versatile platform for military robotics[C]//Proceedings Volume 5422, Unmanned Ground Vehicle Technology VI. Orlando, Florida, Apr. 12-16, 2004.
[17] MICHAUD F, LÉTOURNEAU D, ARSENAULT M, et al. AZIMUT, a leg-track-wheel robot[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, NV, Oct. 27-31, 2003.
[18] 赵希庆, 尚建忠, 罗自荣, 等. 四连杆变形履带式机器人的越障性能分析[J]. 机械设计与研究, 2009, 25(6): 36-39.
ZHAO X Q, SHANG J Z, LUO Z R, et al. Analysis on the performance of obstacle surmounting for deformable tracked robot with four links[J]. Machine Design & Research, 2009, 25(6): 36-39.
[19] 李琳, 李超宇, 杨冰冰. 基于行星轮机构履带式煤矿侦察机器人越障性能分析[J]. 煤炭技术, 2018, 37(11): 289-292.
LI L, LI C Y, YANG B B. Crossing obstacles performance analysis of crawler coal mine reconnaissance robot based on planetary gear mechanism[J]. Coal Technology, 2018, 37(11): 289-292.
[20] 安治国, 周志鸿. 带辅助轮摆臂的履带式机器人越障能力分析[J]. 山东科技大学学报(自然科学版), 2024, 43(2): 121-132.
AN Z G, ZHOU Z H. Analysis of obstacle-crossing ability of swing arm tracked robot with auxiliary wheels[J]. Journal of Shandong University of Science and Technology (Natural Science), 2024, 43(2): 121-132.
[21] 孙海燕, 宗成国. 可变形履带式移动机器人设计分析[J]. 电子质量, 2023(5): 40-43.
SUN H Y, ZONG C G. Design and analysis of deformable tracked mobile robot[J]. Electronics Quality, 2023(5): 40-43.
[22] 张小俊, 张明路, 张建华, 等. 基于欠驱动原理的变形连杆履带机构设计[J]. 机械设计, 2018, 35(3): 43-48.
ZHANG X J, ZHANG M L, ZHANG J H, et al. Deformation and connecting rod mechanism design based on underactuation principle[J]. Journal of Machine Design, 2018, 35(3): 43-48.
[23] 陈广庆, 沈灵斌. 模块化欠驱动行星履带机器人设计[J]. 煤矿机械, 2020, 41(8): 1-3.
CHEN G Q, SHEN L B. Design of modular underactuated planetary crawler robot[J]. Coal Mine Machinery, 2020, 41(8): 1-3.
[24] 孙军权. 自适应行星轮式履带机器人的研究[D]. 北京: 北京交通大学, 2019.
SUN J Q. Research on adaptive planetary wheeled crawler robot[D]. Beijing: Beijing Jiaotong University, 2019.
[25] 周筑宝. 最小耗能原理及其应用: 材料的破坏理论、本构关系理论及变分原理[M]. 北京: 科学出版社, 2001.
ZHOU Z B. Principle of minimum energy consumption and its applications: material failure theory, constitutive relation theory and variational principle[M]. Beijing: Science Press, 2001.
[1] 卢清华, 黄铭贤, 陈为林. 平面阻尼型欠驱动夹持器的多模式参数优化设计[J]. 工程设计学报, 2018, 25(6): 690-696.